VITTORIO PAJNO

SAILPLANE DESIGN EXAMPLE

Design calculation example
Structural dimensioning
Technical specifications - Design rules

Copyright © IBN Istituto Bibliografico Napoleone 2016

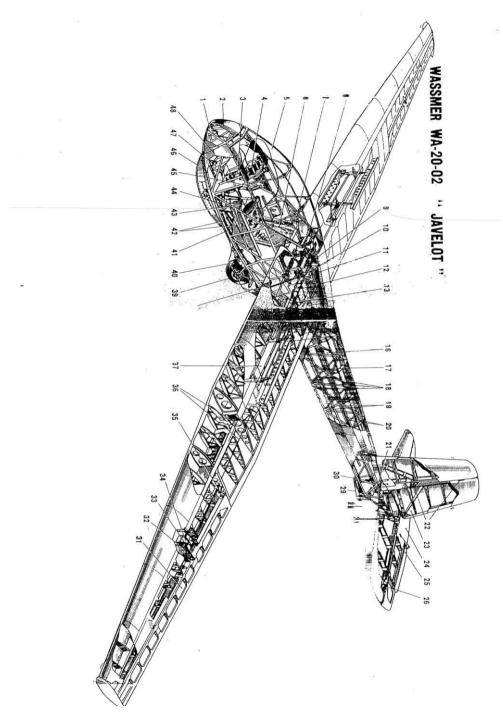
Via dei Marsi, 57 - 00185 Roma (Italy) Tel. 06-4469828 - Fax 06-4452275

e-mail: info@ibneditore.it

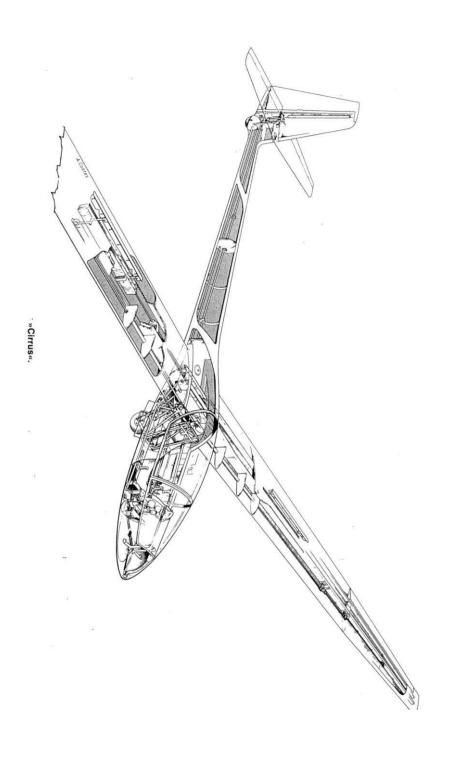
www.ibneditore.it

I diritti di riproduzione, di memorizzazione e di adattamento totale o parziale con qualsiasi mezzo (compreso microfilm e copie fotostatiche) sono riservati a norma di legge e a norma delle convenzioni internazionali

CONTENT


PART 1	
FOREWORD	ç
Introduction	11
REFERENCE DOCUMENTS	15
PART 2	
SAILPLANE CONSTRUCTION EVOLUTION	17
Рнотоѕ	31
PART 3	
SECTIONS:	
0. SAMPLE SAILPLANE DRAWING AND CALCULATION LIST	49
1. SAMPLE SAILPLANE DATA	53
2. FUSELAGE WETTED SURFACE AREA	61
3. POLAR CALCULATION	63
4. POLAR WITH AIRBRAKES OPEN	68
5. V-N DIAGRAMS	72
6. GUST ENVELOPE DETERMINATION	77
7. Tow speed	82
8. LIFT DISTRIBUTION. SHRENK'S METHOD	85

9. MASS FORCES DETERMINATION AND DISTRIBUTION	89
10. WING TORSION	91
11. MT VARIATION DUE TO WING "P" AND "Q"	94
12. WING TORSION DESIGN CONSIDERATION	102
13. WING TORSION DUE TO AILERON MANOEUVRE	106
14. AILERONS LOADS	108
15. AIRBRAKES LOADS	113
16. Wing fitting loads	117
17. THE M.A.C. AND M.G.C. CALCULATION	125
18. SAILPLANE WEIGHTS AND PITCHING MOMENT OF INERTIA	127
19. The Pitching moment of $$ inertia and $J_{\scriptscriptstyle G}$ calculation	131
20. INERTIA MOMENTS ABOUT THE THREE AXES: X, Y, Z	132
21. C.G. EXCURSION	135
22. HORIZONTAL TAIL LOADS. BCAR-E RULES	139
23. HORIZONTAL TAIL LOADS. "MEANS OF COMPLIANCE" AS	
PER EASA CS 22 RULES. BOOK 2	146
24. HORIZONTAL TAIL. GUST LOADS MANOEUVRE. SUPPLEMENTARY	
LOADS ON THE HORIZONTAL TAIL DUE TO TAIL GUST	151
25. HORIZONTAL TAIL. ASYMMETRIC LOADS	155
26. VERTICAL TAIL LOADS. LOAD DUE TO THE RUDDER ROTATION	157
27. VERTICAL TAIL LOADS. YAW LOADS	163
28. FIN SUPPLEMENTARY LOADS	165
29. Control loads	166
30. Fuselage Loads	168
31. STATIC STABILITY	176
32. Analysis of the Controls	189
33. Landing gears. Main gear	202
34. Reference distances	207


PART 4

STRUCTURAL CALCULATION CONTENT

SECTION A - PRELIMINARY WEIGHT CALCULATION	211
SECTION B - WING SPAR CALCULATIONS	224
SECTION C - THE WING SKIN WEIGHT AND TOTAL WEIGHT	237
SECTION D - AIRBRAKE STRUCTURAL CHECK	239
SECTION E - AILERONS	242
SECTION F - AUXILIARY SPAR CALCULATION	249
SECTION G - CALCULATION OF WING-FUSELAGE FITTINGS	251
SECTION H - WING DEFLECTION	255
SECTION I - EMPENNAGES	258
SECTION K - STRUCTURAL CHECK OF THE FUSELAGE	268
SECTION L - FIXED AND RETRACTABLE LANDING GEAR	287
SECTION M - LANDING GEAR RETRACTION CONTROL	299
SECTION N - BALANCING METHOD	301
SECTION O - LAMINATIONS	305
SECTION P - CONTROLS	308
SECTION Q - EQUIPMENT AND MAINTENANCE	312
Conclusion	315

WASSMER WA 30 - JAVELOT . TECHNICAL DETAILS

SCHEMPP-HIRTH - CIRRUS. TECHNICAL DETAILS

H 17 – 1933/34

H 28. An H 17 improvement of H 17


GRUNAU II. A TYPICAL TRAINER. 1933/34

ASIAGO. PAVULLO, ITALY. 1935

ASIAGO. AN ITALIAN TRAINER IN MILAN

MEISE OLYMPIC SAILPLANE. 1940.

PART 3

SECTION 0

Sample Sailplane Drawing and Calculation List

The purpose of this section is to show the reader what is required, in terms of drafting, tooling, and calculation work, before proceeding with sailplane design and to the drafting of parts. What follows is the first estimate that will vary during the design phase due to the unknown problems connected to the specific sailplane being designed and the number of details required.

Adequate space is required in order to make the most of the activities and the tooling must be simple but up to date. There should be a computer, filing cabinets, two long tables with dimensions of $1.20 \times 3.00 \text{ m}$, a drawing board with dimensions of $1.10 \times 2.00 \text{ m}$, and equipped with a parallel rule 2.00 m long and a square, $450 \times 450 \text{ mm}$.

It must be possible to change the inclinations of the hypotenuse square, so that we can trace inclined parallel lines.

The lists shown below are an estimate and must only be used for budgeting and planning purposes.

DRAWING LIST

Mould study

TITLE SCALE

Three views 1:10 and 1:25
Technical data on A4 sheets

Costs and correspondence on A4 sheets

Bureaucratic correspondence

1:1

WING

Wing 1: 2 or/and 1: 4

Wing Sections 1:1

Spar 1:2 and 1:4

Airbrakes 1:1

Aileron 1:4 and 1:1 (sections)

 $\begin{array}{ccc} \text{Bayonet} & & 1:1 \\ \text{Wing fittings} & & 1:1 \\ \text{Details} & & 1:1 \end{array}$

FUSELAGE

Side view 1 : 2 (forward part and tail boom)

Plan view 1: 2 idem as above

Sections 1:1Canopy 1:1 Wing - fuselage fittings 1:1 Pedals 1:1 Controls 1:1 1:1 Seat Instrument panel 1:1 1:1 Floor

HORIZONTAL TAIL 1:2 (to match with the fuselage)

VERTICAL TAIL 1: 2 idem as above

MAIN LANDING GEAR 1:1 and 1:2

TAIL WHEEL 1:1 and 1:2

ELECTRIC EQUIPMENT 1:4

ANEMOMETRIC EQUIPMENT 1:4

CALCULATION LIST

Sailplane main data

Polar. Airbrakes open and closed

m.a.c. and m.g.c. calculations

Reference distances

V-n envelope

Gust envelope

Wing loads. Shear and bending

Wing loads. Torsion

Aileron loads

Airbrake loads

Wing fittings load

Masses distribution

C.G. position

Moments of inertia about the three axes

Vertical tail loads. Rudder action case

Vertical tail loads. Yaw case

Fuselage loads

Main landing gear loads

Tail wheel load

Control loads

Basic structural checks

Sailplane FEA analysis

Flutter analysis

Crashworthiness study

CONCLUSION

We suggest examining the content of this book in more depth to obtain a more detailed estimate of the time required to design the sailplane.

The time required mostly depends on the number of people involved, their specific capabilities and how they are coordinated.

Although a project manager is not indispensable he/she can be of help especially in controlling costs.