Standard Aircraft Handbook for Mechanics and Technicians

Ronald Sterkenburg Peng Hao Wang

Eighth Edition

New York Chicago San Francisco Athens London Madrid Mexico City Milan New Delhi Singapore Sydney Toronto Copyright © 2021 by McGraw Hill. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-1-26-046893-9 MHID: 1-26-046893-3

The material in this eBook also appears in the print version of this title: ISBN: 978-1-26-046892-2,

MHID: 1-26-046892-5.

eBook conversion by codeMantra

Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for use in corporate training programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

Information contained in this work has been obtained by McGraw Hill from sources believed to be reliable. However, neither McGraw Hill Education nor its authors guarantee the accuracy or completeness of any information published herein, and neither McGraw Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw Hill and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill Education's prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED "AS IS." McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

Contents

Acknowledgments	xix
Introduction Fuselage Structure Location Numbering Systems Wing Structure Empennage or Tail Assembly	1 1 3 6 7
Tools and How to Use Them Safety Considerations General-Purpose Hand Tools Hammers Screwdrivers Pliers Punches Wrenches Metal-Cutting Tools Hand Snips Hacksaws Chisels Files Drilling and Countersinking	9 9 10 10 12 13 14 16 16 17 19 19
Layout and Measuring Tools Rules Combination Sets Scriber Dividers and Calipers Slide Calipers Taps and Dies Shop Equipment Holding Devices Squaring Shears Throatless Shears Bar Folder Sheet-Metal Brake Slip Roll Former Grinders	22 23 24 24 24 27 28 29 30 30 31 32 33 34
	Fuselage Structure Location Numbering Systems Wing Structure Empennage or Tail Assembly Tools and How to Use Them Safety Considerations General-Purpose Hand Tools Hammers Screwdrivers Pliers Punches Wrenches Metal-Cutting Tools Hand Snips Hacksaws Chisels Files Drilling and Countersinking Reamers Layout and Measuring Tools Rules Combination Sets Scriber Dividers and Calipers Slide Calipers Taps and Dies Shop Equipment Holding Devices Squaring Shears Throatless Shears Bar Folder Sheet-Metal Brake Slip Roll Former

vi Contents

3	Materials and Fabricating	37
	Aircraft Woods	37
	Wood Substitutions	37
	Plywood	37
	Laminated Wood	40
	Bonding of Wood Structures	40
	Inspection of Wood Structures	41
	Dry Rot and Decay	41
	Adhesive Joints	43
	Cracks	43
	Compression Failure	43
	Surface Crushing	43
	Staining	43
	Corrosion	43
	Slope of a Grain	44
	Wood Repairs	44
	Repair of Damaged Plywood Structures	45
	Aircraft Fabrics	46
	Dopes and Finishing Materials	48
	Supplemental Type Certificates	49
	Minimum Fabric Requirements	49
	Fabric Seams	49
	Covering Methods	49
	Hand Sewing	50
	Rib Lacing	50
	Fabric Inspection	54
	Tears in Fabric	56
	Aluminum and Aluminum Alloys	57
	Alloy and Temper Designations	58
	Cast and Wrought Aluminum Alloy	
	Designation System	59
	Aluminum	59
	Aluminum Alloys	60
	Temper Designation System	60
	Characteristics of Aluminum Alloys	60
	Nonheat-Treatable Alloys	60
	Heat-Treatable Alloys	60
	Clad Alloys	62
	Annealing Characteristics	62
	Typical Uses of Aluminum and Its Alloys	62
	Heat Treatment of Aluminum Alloys	63
	Identification of Aluminum	64
	Handling Aluminum	65
	Forming Aluminum Alloys	66
	Forming at the Factory	66

Blanking	67
Bending	67
Press-Brake Forming	67
Stretch Forming	68
HydroPress Forming	69
Roll Forming	69
Flexible-Die Forming	69
Machining	71
Drilling	71
Turret Lathes and Screw Machines	71
Milling	72
Routing	72
Forging	72
Casting	73
Chemical Milling	73
Making Straight-Line Bends	74
Bend Allowance	74
Brake or Sight Line	77
	79
J Chart for Calculating Bend Allowance	79
Making Layouts	
Relief Holes	80
Miscellaneous Shop Equipment and	90
Procedures	80
Magnesium and Magnesium Alloys	83
Heat Treatment of Magnesium Alloys	84
Titanium and Titanium Alloys	84
Titanium Designations	85
Corrosion Characteristics	86
Treatment of Titanium	86
Working with Titanium	86
Machining of Titanium	86
Milling	87
Turning	87
Drilling	87
Tapping	88
Grinding	88
Sawing	88
Cleaning After Machining	88
Shop-Forming Titanium	89
Stress Relief	89
Ferrous Aircraft Metals	89
Identification	89
Types, Characteristics, and Uses of	
Alloyed Steels	90
Heat Treatment of Ferrous Metals	93

viii Contents

4	Drilling and Countersinking	95
	Rivet Hole Preparation	95
	Rivet Hole Location	95
	Drills	96
	Drill Sharpening	98
	Drill Points	99
	Drilling Equipment	99
	Drilling Operations	102
	Chucking the Drill	102
	Drilling Holes	102
	Drill Stops and Drill Bushings	103
	Using an Extension Drill	104
	Drilling Aluminum and Aluminum Alloys	105
	Drilling Titanium and Titanium Alloys	105
	Drilling Stainless Steel	106
	Deburring	106
	Countersinking	107
	Types of Countersinking Cutters	107
	Countersinking Holes	109
	Minimum Countersinking Depth	110
	Form Countersinking (Dimpling)	110
	100 Degree Combination Predimple	
	and Countersink Method	113
	Hole Preparation for Form	
	Countersinking	113
	Shaving Flush Head Fasteners	114
	Reamers	114
5	Riveting	117
	Solid-Shank Rivets	117
	Material	117
	Rivet Types and Identification	117
	Riveting Practice	122
	Edge Distance	122
	Rivet Length	122
	Rivet Spacing	123
	Hole Preparation	124
	Use of Clecos	125
	Driving Solid-Shank Rivets	125
	Rivet Sets	126
	Bucking Bars	127
	Riveting Procedure	128
	Blind Bucking	131
	Tapping Code	132
	Hand Riveting	132

	Rivet Squeezers	133
	Inspection After Riveting	134
	Rivet Removal	136
	NACA Method of Double Flush Riveting	136
	Blind Rivets	138
	Mechanical Locked-Stem Self-Plugging	
	Rivets	140
	Removal of Mechanically Locked Blind	
	Rivets	145
	Sheet-Metal Repair	145
	Damage Removal	145
	Repair Material Thickness	146
	Rivet Selection	146
	Rivet Spacing and Edge Distance	147
	Repair Approval	147
	Typical Sheet-Metal Repairs	148
	Patches	148
	Flush Patch	149
	XA7 1 1°	4
6	Welding	155
	Welding Processes	155
	Types of Weld Joints	155
	Parts of a Weld	155
	Proportions of a Weld	157
	Correct Formation of a Weld	157
	Oxyacetylene Welding Equipment	158
	Acetylene	158
	Oxygen	159
	Acetylene and Oxygen Regulators	159
	Welding Torches	161
	Welding, or Filler, Rod	161
	Safety Equipment	161
	Welding Gloves	161
	Spark Lighter	162
	Setting the Pressure	162
	Lighting the Torch	163
	Oxyacetylene Flames	163
	Backfire and Flashback	164
	Shutting Down the Welding Apparatus	165
	Gas Welding Techniques	165
	Holding the Torch	165
	Forming the Puddle and Adding Filler Material	166
	Torch Motions	166
	Reducing Distortion and Residual Stress	168
	Weld Quality	169

x Contents

	Gas Welding Aluminum, Magnesium, and Titanium	169
	Types of Inert-Gas Welding	169
	Metal Inert-Gas (MIG) Welding	170
	Advantages of Inert-Gas Welding	170
	Soldering and Brazing	170
	Soldering and Brazing	17(
7	Bolts and Threaded Fasteners	173
	Aircraft Bolts	174
	General-Purpose Bolts	174
	Close-Tolerance Bolts	174
	Classification of Threads	174
	Identification and Coding	175
	Aircraft Nuts	175
	Self-Locking Nuts to 250°F	179
	High-Temperature Self-Locking Nuts	179
	Miscellaneous Nut Types	179
	Aircraft Washers	181
	Plain Washers	181
	Lock Washers	181
	Installation of Nuts and Bolts	182
	Torque Tables	184
	Cotter Pin Hole Line-Up	184
	Safetying of Nuts, Bolts, and Screws	184
	Cotter Pin Safetying	187
	Installation: Bolts, Washers, Nuts, and	1.05
	Cotter Pins	187
	Miscellaneous Threaded Fasteners	188
	Screws	188
	Dzus Fasteners	190
	Camloc Fasteners	191
	Hi-Lok®, Hi-Tigue®, and Hi-Lite® Fasteners	193
	Hi-Lok® Fastening System	193 194
	Hi-Tigue® Fastening System Hi-Lite® Fastening System	194
	Installation of Hi-Lok®, Hi-Tigue®, and	190
	Hi-Lite® Fasteners	195
	Hole Preparation	195
	1	195
	Pin Grip Length Installation Tools	195
	Installation Steps for an Interference-Fit Hole	198
	Inspection After Installation	199
	Removal of the Installed Fastener	200
	Lockbolt Fastening Systems	200
	Installation Dropodure	201

	Lockbolt Inspection	202
	Lockbolt Removal	202
	Blind Bolts	203
	Cherry Maxibolt® Blind Bolt System	203
	Drive-Nut-Type Blind Bolt	204
8	Aircraft Plumbing	205
	Fluid Lines	205
	Aluminum Alloy Tubing	205
	Steel	205
	Titanium 3AL-2.5V	206
	Tubing Identification	206
	Sizes	206
	Flexible Hose	207
	Synthetics	207
	Rubber Hose	207
	Teflon Hose	208
	Identification of Hose	208
	Size Designation	208
	Identification of Fluid Lines	208
	Plumbing Connections	209
	Flared-Tube Fittings	211
	Flareless-Tube Fittings	211
	Swaged Fittings	211
	Cryofit Fittings	213
	Tube Cutting	213
	Deburring	213
	Tube Bending	213
	Tube Flaring	215
	Assembling Sleeve-Type Fittings	217
	Proof-Testing After Assembly	217
	Installing Flexible Hose Assemblies	218
	Installing Rigid Tubing	219
	Support Clamps	224
	Rigid Tubing Inspection and Repair	224
9	Control Cables	227
	Cable Assembly	227
	Fabricating a Cable Assembly	227
	Swaging	227
	Nicopress Process	228
	Turnbuckles	230
	Safety Methods for Turnbuckles	231
	Double-Wrap Method	231
	Cable Tension Adjustment	233
	Cable Guides	233

xii Contents

10	Electrical Wiring and Installation	237
	Material Selection	237
	Wire Size	238
	Stripping Insulation	239
	Terminals	240
	Aluminum Wire Terminals	242
	Connecting Terminal Lugs to Terminal Blocks	242
	Wiring Identification	244
	Placement of Identification Markings	244
	Wire Groups and Bundles	244
	Spliced Connections in Wire Bundles	246
	Bend Radii	247
	Routing and Installations	248
	Protection Against Chafing	251
	Bonding and Grounding	251
	AN/MS Connectors	252
	Wire Inspection	253
	Electrical Components	254
	Switches	254
	Relays and Solenoids	254
	Fuses	255
	Circuit Breakers	255
11	Aircraft Drawings	257
	Orthographic Projection	257
	Working Drawings	257
	Detail Drawing	258
	Assembly Drawing	258
	Installation Drawing	259
	Title Block	259
	Bill of Material	260
	Other Data	260
	Sectional Views	260
	The Lines on a Drawing	261
	Rivet Symbols Used on Drawings (Blueprints)	262
10		
12	Nondestructive Testing (NDT) or Nondestructive Inspection (NDI)	265
		265 265
	Visual Inspection	
	NDT Beyond Visual Inspection	266 266
	Liquid Penetrant Inspection	267
	Eddy-Current Inspection	269
	Ultrasonic Inspection	269
	Magnetic Particle Inspection	271
	magnetic i article mopellion	∠/ I

	Radiography	272
	Tap or Coin Test	274
	Thermography	275
	Shearography	275
13	Corrosion Detection and Control	277
	Types of Corrosion	277
	Direct Chemical Attack	278
	Electrochemical Attack	278
	Forms of Corrosion	279
	Surface Corrosion	279
	Filiform Corrosion	279
	Pitting Corrosion	281
	Intergranular Corrosion	281
	Exfoliation Corrosion	282
	Stress Corrosion	283
	Fretting Corrosion	283
	Effects of Corrosion	283
	Corrosion Control	284
	Inspection Requirements	285
	Corrosion Prevention	286
	Corrosion-Prone Areas	286
	Corrosion-Removal Techniques	286
	Surface Damage by Corrosion	287
	•	
14	Composites	289
	Introduction	289
	Definition of Composite Materials	289
	Major Components of a Laminate	289
	Types of Fiber	290
	Fiberglass	290
	Carbon	290
	Kevlar®	290
	Fiber Forms	291
	Roving	291
	Unidirectional (Tape)	291
	Bidirectional (Fabric)	292
	Resin Systems	292
	Mixing Two-Part Resin Systems	293
	Curing Stages of Thermosetting Resins	293
	Dry Fiber and Prepreg	293
	Adhesives	294
	Film Adhesives	294
	Paste Adhesives	294
	Forming Adhesives	205

xiv Contents

	Honeycomb Sandwich Structures	295
	Laminate Structures	296
	Damage and Defects	298
	Delamination and Debonds	299
	Resin Rich or Starved	299
	Fiber Breakage	299
	Matrix Imperfections	299
	Moisture Ingress	299
	Vacuum Bagging Techniques	299
	Release Agents	300
	Bleeder Ply	300
	Peel Ply	300
	Layup Tapes	300
	Perforated Release Film	300
	Solid Release Film	300
	Breather Material	300
	Vacuum Bag	301
	Curing and Curing Equipment	301
	Oven	301
	Autoclave	301
	Heat Bonder	301
	Types of Layups for Repair	301
	Wet Layup	303
	Prepreg Layup	303
	Repairs of Honeycomb and Laminate Structures	304
	Honeycomb Sandwich Repair	304
	Repair of Laminate Structure	304
	Specialty Fasteners Used for Composite	
	Structures	306
	Fastener Materials	307
	Drilling	307
	Countersinking	307
15	Standard Parts	309
	Standard Parts Identification	309
	Standard Parts Illustrations	310
	Additional Standard Parts (Patented)	335
16	Weight and Balance	345
	Introduction	345
	FAA Requirements	345
	Weight and Balance Terminology	346
	Aircraft Weighing	347
		01,

17	Regulations, Publications, Maintenance Forms,	
	and Records	361
	Definitions	361
	Maintenance-Related Regulations	361
	Advisory Circulars (AC)	364
	Airworthiness Directives (AD)	365
	Aircraft Specifications	365
	Type Certificate Data Sheets (TCDS)	365
	Supplemental Type Certificates	365
	Manufacturers' Published Data	366
	Service Bulletins (SB)	367
	Forms	368
	Airworthiness Certificates	368
	FAA Form 337—Major Repair and Alteration	368
	Records	368
	Temporary Records	368
	Permanent Records	371
	Appendix	373
	Glossary	377
	Index	383

CHAPTER 2

Tools and How to Use Them

Safety Considerations

Before commencing work on an aircraft, personal safety must become habit. Putting on safety glasses must be as much a part of the act of drilling a hole as picking up the drill motor.

The responsibility for this attitude lies with the mechanic, but this responsibility goes further. A mechanic's family needs him whole, with both eyes intact, both hands with all fingers intact, and above all, in good health.

Safety glasses or face shields must be worn during all of the following operations:

- Drilling
- Reaming
- Countersinking
- Driving rivets
- Bucking rivets
- Operating rivet squeezer
- Operating any power tool
- Near flying chips or around moving machinery

Ear plugs should be used as protection against the harsh noises of the rivet gun and general factory din. If higher noise levels than the rivet gun are experienced, a full-ear-coverage earmuff should be used because it is a highly sound-absorbent device.

For people with long hair, a snood-type cap that keeps the hair from entangling with turning drills should be worn. Shirt sleeves should be short and long sleeves should be rolled up at least to the elbow. Closed-toe, low-heel shoes should be worn. Open-toed shoes, sandals, ballet slippers, moccasins, and canvas-type shoes offer little

10

or no protection for feet and should not be worn in the shop or factory. Safety shoes are recommended.

Compressed air should not be used to clean clothes or equipment.

General-Purpose Hand Tools

Hammers

Hammers include ball-peen and soft hammers (Fig. 2-1). The ballpeen hammer is used with a punch, with a chisel, or as a peening (bending, indenting, or cutting) tool. Where there is danger of scratching or marring the work, a soft hammer (for example, brass, plastic, or rubber) is used. Most accidents with hammers occur when the hammerhead loosens. The hammer handle must fit the head tightly. A sweaty palm or an oily or greasy handle might let the hammer slip. Oil or grease on the hammer face might cause the head to slip off the work and cause a painful bruise. Striking a hardened steel surface sharply with a ball-peen hammer is a safety hazard. Small pieces of sharp, hardened steel might break from the hammer and also break from the hardened steel. The result might be an eye injury or damage to the work or the hammer. An appropriate soft hammer should be used to strike hardened steel. If a soft hammer is not available, a piece of copper, brass, fiber, or wood material should be placed on the hardened steel and struck with the hammer, not the hardened steel.

Screwdrivers

The screwdriver is a tool for driving or removing screws. Frequently used screwdrivers include the common, crosspoint, and offset. Also in use are various screwdriver bits that are designed to fit screws with special heads. These special screwdrivers are covered in Chap. 7.

A common screwdriver must fill at least 75 percent of the screw slot (Fig. 2-2). If the screwdriver is the wrong size, it will cut and burr the screw slot, making it worthless. A screwdriver with the wrong blade size might slip and damage adjacent parts of the structures. The common screwdriver is used only where slotted head screws or fasteners are used on aircraft.

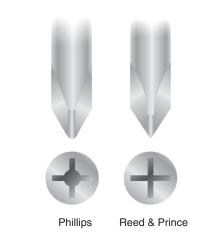


FIGURE 2-1 Types of hammers.

Figure 2-2
Types of screwdrivers.

Phillips Screwdriver

The two common recessed head screws are the Phillips and the Reed and Prince. As shown in Fig. 2-2, the Reed and Prince recessed head forms a perfect cross. The screwdriver used with this screw is pointed on the end. Because the Phillips screw has a slightly larger center in the cross, the Phillips screwdriver is blunt on the end. The Phillips screwdriver is not interchangeable with the Reed and Prince.

12 Chapter Two

The use of the wrong type of screwdriver results in mutilation of the screwdriver and the screwhead. A screwdriver should not be used for chiseling or prying.

Pliers

The most frequently used pliers in aircraft repair work include the needle nose, duckbill, slip joint, diagonal cutter, water-pump, and vise grip pliers as shown in Fig. 2-3. The size of pliers indicates their overall length, usually ranging from 5 to 12 inches. In repair work, 6-inch, slip-joint pliers are the preferred size. Needle nose and duckbill pliers are used to reach where the fingers alone cannot and to bend small pieces of metal. Slip-joint pliers are used to grip flat or round stock and to bend small pieces of metal to desired shapes. Diagonal-cutting pliers or diagonals or dikes are used to perform such work as cutting safety wire and removing cotter pins. Water-pump pliers, which have extra-long handles, are used to obtain a very powerful grip. Vise-grip pliers (sometimes referred to as a *vise-grip wrench*) have many uses. Examples are to hold small work as a portable vise, to remove broken studs, and to pull cotter pins.

FIGURE 2-3 Types of pliers (from left to right: needle-nose, duckbill, diagonal cutter, and water-pump pliers).

Pliers are not an all-purpose tool. They are not to be used as a wrench for tightening a nut, for example. Tightening a nut with pliers causes damage to both the nut and the plier jaw serrations. Also, pliers should not be used as a prybar or as a hammer.

Punches

Punches are used to start holes for drilling; to punch holes in sheet metal; to remove damaged rivets, pins, or bolts; and to align two or more parts for bolting together. A punch with a mushroomed head should never be used. Flying pieces might cause an injury. Typical punches used by the aircraft mechanic are shown in Fig. 2-4.

Figure 2-4 Typical punches.