Cyclic and Cyclic and

The Art and Science of Flying Helicopters

Forward by Ray Prouty

Shawn Coyle Eagle Eye Solutions, LLC

Copyright © 2009 by Shawn Coyle

All rights reserved.

Why Two "Books"?	iii	Lift	20
Why Did I Write This Book?	iv	More Discussion of Lift	22
Keeping Things in Perspective	iv	Formula for Lift	23
Standard Disclaimers	iv	Drag	24
Political Correctness	v	Zero Angle of Attack	<i>26</i>
Aim of every flight	v	2	2=
Terms Used	v	3 The Rotor Blade	.27
Dedication Dedication	v	General	27
Introduction to the Second Edition	vi	Axes of the Blades	<i>27</i>
Corrections and Additions	vi vi	How Lift Gets to the Hub	29
Corrections and Additions	Vi	Drag on the Whole Blade	<i>29</i>
Some Fundamentals	1	Blade Flapping	<i>30</i>
Math and Physics Revisited	1	A Brief Moment to Study Law	31
Vectors	1	4 Mara Paging of the Halicanter	.25
Newton's Laws	-	4 <i>More Basics of the Helicopter</i>	
	1	Generic Helicopter	35
Newton's First Law	1 2	The Whole Rotor	35
Newton's Second Law Newton's Third Law	2	Telling the Blades Apart	35
	_	Airframe Relative Airspeed	36
Other Physics and Maths terms Momentum and Inertia	2	Relative Airflow and Disk	37
Momentum ana Inertia Speed	2	Forward Flight and Dissymmetry of Lift	<i>37</i>
Velocity	2	Cyclical Change of Pitch	39
Acceleration	3	Flapping to Equality	40
Equilibrium	3	Total Lift from the Disk	41
Vectors, Resultants and Resolving	3	Tip Path Plane	41
Moments and Couples	4	Drag at Different Parts of the Disk	41
Moments	4	Total Drag on the Disk	42
Couple	4	Keeping the Blades Clean	42
Balance of Forces	5	Flapback or Blowback	42
Dimensional Correctness	5	Rotor Heads and Components	43
Distance and Time	5	Fully Articulated Rotor Hub	43
Mass, Force, Energy and Work	5	Control of the Rotor	44
Mass	5	The Swashplate	44
Force	6	Phasing of Control Inputs	44
Energy	6	Rotating Scissors Assembly	46
Work	7	So What?	46
Power	7	Tail Rotors	46
Graphs and Such	7	Anti-Torque Control	46
Putting Together Some of the Basics	8		
atting regetiler some of the Busies	· ·	5 Air, Wind and Weather	49
2 Introduction to Helicopter		Introduction	49
Aerodynamics	. 13	What Temperature is That?	49
Terms Used	13	Where do we Measure Vertical Distance	From?
Zero Airspeed vs. Zero Groundspeed He	_	49	
Center of Gravity (CG)	13	International Standard Atmosphere	49
Aerodynamic Terms	13	Standard Day	49
Angle of Attack	17	Pressure Altitude	50
		Non-Standard Day	50

Density Altitude	51	Longitudinal CG	76
Importance of Understanding Density A	ltitude 52	Lateral CG	77
The How and Why of Density Altitude	52	Vertical CG	77
Relative Humidity	52	Balance of Forces	78
Wrong Information	53	General	<i>78</i>
More Wrong Information	54	Balance of Forces in the Hover	79
Wind!	55	Side View Four Basic Forces	<i>79</i>
Knowing The Wind from Natural Source		Top View Balance of Forces - Torque Re	action 79
Wind Speed Change with Height	56	Rear View of Balance of Forces	<i>79</i>
Wind Direction Change with Height	57	Trim	81
Wind Shift and Turbulence	<i>57</i>	Balance of Forces - Forward Flight	<i>82</i>
A Lesson from the Birds	57	Side View of Balance of Forces	82
Weather	58	Top View of Balance of Forces Forward	Flight83
So What do We Need to Worry About?	58	Inherent Sideslip	83
An Example	58	Rear View of Balance of Forces - Forwa	rd Fligh
6 Basic Helicopter Performance	ce 61		
Introduction	61	8 The Aerodynamics of Autorot	anon
Airframe Performance Defined	61	85	
Measuring Performance	61	Introduction	85
	-	Autorotation Defined	85
Hover performance	61	Conditions Necessary for Autorotation	86
Out of Ground Effect (OGE)	62 62	Lift Vectors Again	86
In Ground Effect (IGE)	63	Effect of Forward Flight	88
How Does Ground Effect Happen? Using a Crane to Lift Instead of an Eng		How the Blade Works in Autorotation	89
		N_R in Autorotation Descent	89
Power Required vs. Density Altitude		Another Use for the Autorotation RPM (
Hover Ceilings	65	Effect of Density	90
Forward Flight Performance	65	Effect of Weight	90
Power Required vs. Airspeed	65	Lifect of weight	70
What You Can't Do with This Chart	66	9 Instruments and Warning Sys	tems
The 'Backside' of the Power Curve	66	91	
Low Airspeed Power Required	67	Airframe Instruments	01
Climb and Descent Performance -			91
Simplified	68	Sideslip and Side Force	91
Flight Manual Charts	<i>68</i>	What the Slip Ball Measures	91
V Airspeeds	69	What is Sideslip?	92
Load Factors	69	Slip Strings	94
_		Engine Transmission and Rotor Instru	uments
Balance and Weight	71	94	
The Importance of Center of Gravity		N_R Warnings	94
Calculating Weight and Balance	71 72	Transmissions and Gearboxes	95
		Transmission Oil Temperature and Pres.	
Balance	72 73	Chip Detectors	96
Datum Forward of the Nose.	73 74	10 The Piston Engin	a 0.7
Datum At Rotor Mast	74 75	_ = =	Ey /
Weight and CG Diagram	75	Introduction	97
Weight vs. Loaded Moment Method	75 75	Principles of Operation	97
Yet Another Way to Measure CG	75	Components	97

Basics of Carburation	99	11 Dear Student	110
Vaporization	99		
Piston Engine Helicopter Instrumen	ts 100	Instructors - What They Know and Do	n't Know
Manifold Pressure	100	119 Roya on a little Difference on	110
Starting	102	Personality Differences The Essential Pre-Flight Briefing	119 120
Clutches	102	The Essential Fre-Filght Briefing Checklists	120 120
Centrifugal (or Automatic) Clutch	102	For Those Who Make Checklists	121
Idler or Manual Clutch	103	All Those Gages and Clocks!	121
Free-Wheel Units	103	Blindfold Cockpit Checks	121
Piston–Engine Helicopter Power Co		For Both Instructor and Student	121
Rotor RPM	104		121 121
	104	Transfer of Control Following Through on the Controls	121 122
Power Output		Where to Look	122
Measuring Piston Engine Helicopte	r Power		
105		Outside, Mostly Look Around	122 122
Same Engine in a Seized Wing Airplan		Look Arounu Collision Course	122 122
Carburetor Icing	105		123
Why do Carburetors Ice Up?	105	Post-flight	123 123
More Carburetor Icing Explanation	106	Walkaround	123
Effects of Icing	107	12 Before You Strap In	125
Symptoms of Carburetor Icing	107		
Carburetor Heat	108 109	Introduction	125
Prevention of Carburetor Ice		Prior to Lift-off	125
Mixture Control	109	Terms Used	126
Throttle Handling	110	Pre-Flight Actions	126
Over-Pitching	110	Pre-Flight checks	126
Wrong Side of Torque Curve	111	Walk-Around checks	126
Only on Some Piston Engine Helicopt		Start–Up checks	127
Coning Angle and Over-pitching	111	Energy and the Rotor System	128
Turbine Engines and Over-Pitching	112	Pre-Lift-off Checks	128
Throttle Co–relators	113	Holding the Controls	128
Fuel Injection	113	Light Training Helicopters	128
Piston Engine Governors	113	Control Pressure, Not Control Movem	
How Does the Governor Work?	113	Function of Controls	129
Performance Rules of Thumb for Pi	iston	Effects of Controls	130
Engines	114	Downwash	130
Turbochargers	114	Hand Signals	131
Other Components of the Engine	115	12	
Oil and Oil Pumps	115 115	13Helicopter Flying - The Bo	isics 133
Generators	115	General Introduction	133
Fans	115	Forward Flight	133
Fuel Systems	116	Effects of Controls in Forward Flig	ht 133
Operation of the Piston Engine	116	Cyclic stick	133
Pre-Start	116 116	Collective lever	134
Fuel Draining	116 116	Pedals	134
Starting	116	Summary of Effects of Controls	135
Lift-Off	117	Attitude Flying	135
In-Flight	117		100

Cruise	136	Useful Training Exercises	154
Changing Airspeed in Level Flight	137	General Handling in the Hover	154
Smooth Airspeed Changes	138	Taxing to the Side or Rear	155
Back Side of The Power Curve	139	Ground Taxing Skid Helicopters	156
Two Airspeeds for the Same Power!	139		
Climbs and Descents	139	15 'Twixt Heaven and Earth,	157
Turns	140	Introduction	157
A Note	140	Slipping and Crabbing	157
Gentle Turns (up to 20°Angle of Bank)	<i>140</i>	Transition to Forward Flight	157
Nose Drop	<i>140</i>	Ground Track	158
Increased Power	<i>140</i>	Translational Lift	158
A Changed Sight Picture	141	Other Transitions to Forward Flight	159
Slip Ball	141	Cushion Creep	159
Practice (20 450 4 4 6 D	141	Steep Climbout	159
Medium Turns (20 to 45° Angle of Bank	*	Running Takeoff	159
Steep Turns (Greater than 45° Angle of 141	Bank)	Why Running Takeoffs?	160
	ng o 1 4 2	How It Works	160
Developing a 'Seat of the Pants' Ser	ISC142	How to Carry Out a Running Takeoff	160
14 The Divine Art of Hovering	143	Cautions on the Running Takeoff	<i>160</i>
		"Maximum Performance Climbout"	160
Introduction	143	An Example of Getting Caught	161
To the Hover!	143	Downwind Transition	162
Hovering More Easily	143	Turns After Transition	162
Vertical References	143 144	Approach and Touchdowns	162
Aim of Hovering		Transition Back to the Hover	162
Concepts of Hovering	144		163
Hover - Zero Groundspeed vs. Zero Air	_	Learning to Judge	163 164
Effects of Controls - Hover and Low Ai	rspeea	Perspective Rates of Closure	165
Forward Flight and 'Low Airspeed'	145	'Normal' Approach	165
Overcontrolling in the Hover	146	Suitable Rate of Descent	166
Cyclic Stick as a Position Controller	147	Adding Power	166
N_R Control	149	Fast Approaches	166
Hovering With A Purpose	149		
Partial Control Technique	149	Steep Approach	166
Lots of Things to Do	150	The No-Hover Touch Down	167
Specific Exercises for Learning Hov		Downwind Approach to the Hover	167
150	cring	Approaches with Turns	168
Taxing Along a Line	150	Line-Up	168
Changing Height While Hovering	150	Turning into a Downwind Approach	168
Changing Heading	151	VIP Approaches - Mastery of the Ma	achine
Moving Around	151	168	
Hovering with Different References	151	Running Landing	168
Back to Flying	151 152	Traffic Patterns or Circuits	169
Turns in the Hover	152 152	What do Traffic Patterns Teach / Show	170
No Wind	152 152	Confined Areas	170
No wina With Winds	152 152		
In the Low Speed Environment	153		
in the Low Speed Environment	133		

16 Lift-off and Touchdown	173	'Real' Autorotations	195
		Eyes Out of the Cockpit!	195
Introduction	173	Autorotative Performance	196
Flat Pitch to Light on the Skids	173	Some Final words	196
How Do you Know 'Light on the Skids		Some Words on The Height-Velocit	y Curve
From 'Light on the Skids' to the Hover		197	
Airborne!	175 175	10	
Lift-off out of Wind		19 Peculiarities of the Helico	opter
Touching Down From The Hover	176	199	
Flat Surfaces	176	Introduction	199
Don't Overcontrol	177 177	Loss of Translational Lift	199
A Neat Trick for Smooth Touch Downs			
Sloping Surfaces	178	Vortex Ring State	200
Tail Rotor Side Thrust	180	Impossible Descent Conditions Not Just in Descent	201 201
While You're On the Sloping Ground Wind Across the Slope	180 180	Not Just in Descent Demonstrating Incipient Vortex Ring S	
Lift-off from the Slope	180 180	Uncommanded Attitude Changes	202
Nose Upslope / Downslope	181	Making the Situation Worse	202
One Last Word About Sloping Grou		Recovery	202
One Last Word About Stoping Grou	111(1101	Wrong Advice	203
17 Introducing Emergencies	183	The Why of Vortex Ring State	203
		Why The Symptoms?	204
Emergencies - General	183	Rollover	204
Critical Emergencies	183	Static Rollover	204
Dual Concurrence (or Double Checkin	<i>ig)</i> 184	Dynamic Rollover	205
What Emergencies Can Happen	184	Dynamic Rollover on Landing	205
Unanticipated Emergencies	184	Dynamic Rollover on Takeoff	205
As a Student	184	Action in Event of Dynamic Rollover	206
Chip Detectors	185	Retreating Blade Stall	207
Realistic Emergencies	185	Symptoms	208
Where to Handle Emergencies	185	Blade Sailing	208
18 Engine Failures for Beginn	10rs 187		
		20 Flight Manuals, Rules and	d
General	187	Regulations	. 211
Simulated vs. 'Real' Engine Failures	187	Why?	211
Warming-up for Autorotations Vertical Landings	188 188	The Civilian Flight Manual	211
Engine Failures in the Hover	188	Sections of the FM	211
_		Emergency Definitions	212
Judging Collective Lever Application	189 189	Notes, Cautions and Warnings	213
High Hover Engine Failures Self-Initiated Engine Failures Hover	199 190	Procedural Words	213
Quick Stops	190	Performance Data	213
The Flare	190 191	No Altimeter Correction Charts	214
So What Should You Do?	191	Flight Manual Supplements (FMS)	214
Flare Effectiveness	192	Weight and Balance Information	214
Collective Check - Why It Works	192	Manufacturer's Data	214
Coupling of Forces in Leveling Helico		Individualized Copy of the FM	215
		Some Philosophical Words about the	
Power Recovery Autorotations	194 <i>195</i>	Civilian FM	215
Getting Back to the Hover	193	More Philosophy	216

Certification Basis	216	Walkaround	232
Reasons for Rules	216	Concepts of Controls	233
Two more Pet Peeves	217	Cyclic	233
Reasons for Limitations	217	Collective	233
Another Way of Thinking About Limi	itations 218	Throttle	233
Side Wind, Sideward Flight and A		Pedals	233
218		Looking Outside	233
Is it a Limit Because Its in the Limita	ations	Limitations	233
Section?	218	Following Through	233
Power Ratings and Limitations	219	Checklists	234
The Military Flight Manual	219	Questions and Tests	234
Visual Flight Rules (VFR)	220	When the Students Ask Questions	234
V Speeds	220	What are you Really Trying to Teach	n? 234
21 Miscellaneous	223	Even More Philosophy	234
	223	Specific Exercises	235
Where the Pilot Sits		Trusting the Student	235
Radios and Air Traffic Control	223	Space Awareness	235
Negative Radio	224	Flying by the Seat of the Pants	235
Safety Statistics	224	Written Tests	236
Ground Handling Wheels	224	23 (1) 11111	
Safety for Others	224	23 Advanced Helicopter	
Going Solo	225	Aerodynamics	237
Cross Country Flying	225	Review	237
Single Seat and Ultralight helicopt	ters 225	Hover	237
Inexperienced Pilots Shouldn't Be Fl		Review of Lift and Drag	237
226		Airfoils	237
Get A Private Pilot's License First	226	Non-symmetrical Airfoils	237
Get Experience in Several Different	<i>Types</i> 226	Lift and Drag	237
General Words of Advice	227	Lift to Drag Ratio	238
Shutdown	227	Changing N_R	238
22		Changing Density Altitude	238
22 For the Professional Heli	copter	Blade and Segment Aerodynamics	239
Pilot / Instructor	229	Blade CG location	239
For the Professional Helicopter Pi	lot 229	AoA Changes due to Flapping	239
Helicopter Pilots Are Different	229	AoA, Lift and Center of Pressure	240
Legal Implications	229	Pitching Moments	241
Maintenance	230	Symmetric Section	241 242
Service Difficulty Reports (SDRs)	230	Non-symmetric Section Why the Fuss about Pitching Moments:	
Your Part in Safety	230	Blades	243
Experience	230	Blade Root Cutout	243 243
Care and Feeding of Passengers / Ca			243 243
Make a Decision	231	Blade Tip Shapes Twist	243 244
Philosophy of Instruction	231	Taper	244
Measuring or Predicting Pilot Perfo		Twist and Taper - Again	244
More Philosophy	232	Lift to Drag Ratio Again	245
Preflight Briefing Preflight Inspection	232 232	Disk Aerodynamics	245
1 rejugiu mspecuon	2 J 2	•	

Solidity	245	25 () Description	267
Why 2 Blades May be More Efficient th	nan 4 245	25 Advanced Performance	20/
AoA and the Disk	246	General	267
Advance Ratio	246	Factors Affecting Performance	267
$V_{N\!E}$ and True Airspeed	247	Power Loading	268
Retreating Blade Stall Again	247	Induced Velocity	268
Coning Angle Again	247	Mach Number Effects	269
Transverse Flow Effect or Inflow Roll	247	Hover Performance and Altitude	270
Stick Migration	248	Surface Effect on Hover Performance	270
Tail Rotors	249	Vertical Drag	270
Location on Fuselage	249	Another Look at Hover Performance	271
Size, Direction of Rotation	250	Typical Civil FM Performance chart	
Aerodynamics of the Tail Rotor	250	• -	
24		Level Flight Performance	272
24 Flight Controls and Rotor	Heads	Indicated Airspeed and True Airspeed	272
251		Collective Angle vs. Airspeed	273
General	251	Power vs. Collective Angle	273
Tip Anhedral	251	Peculiarities of Low Airspeed IGE	274
Blade Inertia	251 251	Another Look at Power Required to Ho	
More Reasons for Lead–Lag Motion	251 251	Rotor Efficiency	275
Hook's Joint Effect	251	Ground Vortex Roll Up	275
Other Phase Angles	253	Low Airspeed Power Required - Again	277
Rotor Heads	253	Range	277
Lead–Lag Dampers	253	Range Improvements with Altitude	<i>279</i>
Types of Drag Dampers	25 <i>4</i>	Headwind and Tailwind Effects	<i>280</i>
Droop Stops / Flap Restrainers	255	Point of No Return	281
Droop Stop Pounding	255 255	Equal Time Point	282
Lubrication	256	What If Something Goes Wrong?	282
Disk Axes	256	Endurance	283
Shaft Axis	257	Radius of Action	283
Control Axis	257 257	How to Trick A Navigation System	284
Yet Another Disk Axis	257 257	Payload vs. Radius of Action	284
	258	Climb and Descent Performance	285
Hinges		Climbs	286
Flapping Hinge Offset	258 259	Best Angle of Climb Airspeed	286
Hinge Arrangements Delta–Three Hinges	239 260	Descent Performance	287
Elastomeric Bearings	260 260	Whizz Wheels	287
Hingeless Rotor Heads	261	Rules of Thumb	288
New Rotor Heads	262		
		26 Other Components	<i>291</i>
The Teetering Rotor Head	262	General	291
Stabilizer Bars	263		
Flap or Hub Restraining Springs	264	Fuel Systems	291
Hiller Control System	265	Fuel Valves	291
Robinson R-22 and R-44 Hub.	265	Fuel Pumps	291
MD Series Rotor Head	265	Low Fuel Warning Systems	292
Height of Hub Above the CG	265	Other Parts of the Fuel System	292
Blade Lag Angle	266	When is the Fuel Gauge Reading Corre	-
Negative Pitch	266	Pounds or Gallons?	292
110841110 1 11011	200	Fuel Quality	293

Fuel Drains and Living in the Field	293	Windshield Wipers	309
Fuel Jettison	294	27	211
Transmissions and Drive Shafts	295	27 Advanced Helicopter Flyin	1g311
HUMS	296	So How Do We Fly a Helicopter?	311
Electrical Systems	296	Driving a Car Explained	311
External Power	296	Compensation	311
Generators	296	Flying a Helicopter – Hovering	312
Batteries	<i>297</i>	Cruising Flight Example	312
DC-Based Electrical Systems	<i>297</i>	Other Cue–Related Problems	314
AC-Based Electrical Systems	29 7	Why are Helicopters Difficult to Fly	/?314
Electrical Failures	298	Slow Response Explained	315
Circuit Breakers	<i>298</i>	Cross Coupling	316
When a Circuit Breaker 'Pops'	299	Different Responses from the Pedals	316
Hydraulic Systems	299	How to Hold the Controls	316
Reasons For Hydraulics	299	Cyclic	316
Typical Hydraulic System	<i>300</i>	Overcontrolling	317
Unpressurized Reservoirs	<i>300</i>	Collective	317
Hydraulic Emergencies	<i>300</i>	Pedals	317
De-Ice / Anti-Ice systems	301	Helicopter Pilots are Easy	318
De-Ice vs. Anti-Ice	<i>301</i>	Artificial Control Feel or Trim System.	
Landing Gear	301	Control Forces	320
General	301	Collective Release	320 321
Skids	302		321 322
Wheeled Undercarriage	302	Fuselage Attitudes Pedals Again	322 322
Retractable Landing Gear	303	_	
Off-level Landings	304	The Other Way 'Round	322
Wheel Brakes	304	28 More Instruments	325
Skis	304		
Full Length Skis	304	Pitot Systems	325
Bear Paw Skis	305	Altimeters	326
Skis on Mud	305	Corrections to the Altimeter in Cold	Weather
Floats	305	327	
Fixed Floats	305	Static Port Locations	328
Boating!	305	So What?	328
Start-up / shutdown	305	What Can be Done About This?	328
Spray	306	LORAS (LOw aiRspeed System)	329
Taxing on Water	306	LASSIE	329
Liftoff and Touchdown from the Water	306	RAH-66 Commanche System	329
Following the Waves	306	General Comment on Low Airspeed Sy	stems329
Off-Level Touchdowns on Water	306	Another Reason for Low Airspeed S	
Lift-off and Touchdown from the Groun	nd 307	330	, , , , , , , , , , , , , , , , , , , ,
Other Effects of Fixed Floats	<i>307</i>	Miscellaneous Instruments	331
Emergency Floats	<i>307</i>		
Use and Problems	<i>307</i>	Outside Air Temperature Gages	331
Fire Detection and Suppression	307	Radar Altimeters Waves and Radar Altimeter	331 331
Heating and Ventilation	308	waves and Kaaar Attimeter Vertical Gyroscopes and Attitude Indic	
Seats	308	· -	
Compasses	309	Entering the Digital Era	332
Compasses	307	Too Much Accuracy But Some Good News Too	332 333
		DUL NOME GOOD NEWS 100	111

70 The Trushine Engine	225	Air Conditioning	360
29 The Turbine Engine	333	Performance Effects of Bleed Air Syste	ems 360
Introduction	335	Starting Against the Rotor Brake	361
Turbine Engines are Different!	335	Turbine Engine Cool-Down	361
Typical Free Turbine Engine	335	Emergency Systems	362
Ratings and Limitations of Engines	337	Fixed Shaft Turbine Engines	362
Difference between Ratings and Limita		20	
How Long is Each Limit Good For?	337	30 Advanced Engine Failure	:s363
Cycles	338	General	363
Measuring Temperature	338	Autorotations	363
Density Altitude vs. Pressure Altitude	de and	Sensory Deprived, Multi-Variable Man	
OAT	338	The Big Picture	363
Less Power in Cold Temperatures	339	Where to Practice Autorotative Lan	dings
Effect of Humidity on Turbine Performs	ance 340	364	4 111- 5 5
Compressor Stalls	341	Pre-Nominate the Landing Spot	365
Two Correct Answers Don't Make a Th	ird 341	Autorotations 'En–Route'	365
Turbine Engine Instruments	342	Closer Look of Autorotative Perform	mance
Torquemeters	343	366	
Use of the Torquemeter	345	Energy and Autorotations	367
Governing systems	346	Cone of Possible Areas	368
Reasons for Installing Governors	346		
Droop!	347	Variations on the Theme	369
Static Droop	348	Zero–Airspeed Autorotations	369
Oscillating Governors and Hysteresis	348 349	Reverse Cone of Energy	370 371
Transient Droop Hydro–mechanical Governors	349 349	Landing Site is Straight Ahead Three Basic Locations	371 371
Electronic Fuel Controls	351	Kinetic Energy in the Flare	371 372
FADEC	351 351	Why Try the Variations?	374
What Has All This Got to Do With FAD		Other Situations with Respect to the L	
Failures of Digital Fuel Controls	352	Spot	375
Practical Benefits of FADEC	353	Combinations!	376
Change of the Pilots Point of View	353	Intervention Delay Time	376
Duplication of Sensors	353	Run-Down Time of the Engine	<i>377</i>
Some Improvements Possible?	353	Height Velocity (HV) Curves	377
Manual Control of the Turbine Engine	354	Ignoring A Part of Most HV Curves	<i>378</i>
Question Time	354	So What's Missing about the HV Curv	e? 379
Tail Rotors, Governors and Free Drink		Development of the HV Curve	<i>379</i>
Differences from Piston Engine	355	Miscellaneous Points About the HV C	
Transient Overtorques	355	Another Type of Autorotation	381
Turbine Engine Power Monitoring	356	31 Advanced Empression	202
Topping Checks	356	31 Advanced Emergencies	
Trend Monitoring Checks	357	General	383
Automatic Relight vs. Manual Air S		Tail Rotor Problems	383
Engine–Related Items	358	Loss of Thrust	383
Intake Protection Systems	358	Loss of Thrust in the Hover	384
Anti-Icing vs. De-Icing	358	Loss of Thrust in Forward Flight	384
Bleed Air Systems	359 350	Loss of Control of Tail Rotor Thrust	384
Bleed valves	359 360	Diagnosis of the Situation	385
Heaters	360	Slip Ball Just Touching Right Side	385

Slip Ball Fully Against Right Side Slip Ball Just to the Right of Center	385 386	Fixed Floats Effect on Stability and	Contro
Fires	386	409	410
Fires in the Cockpit	386	Flight Controls	410
Not All Emergencies are in the Boo		Friction Systems on Cockpit Controls	410
Some Emergencies have Other Implica		Viscous Damping of Control Systems Control Mixing	410 411
When to Inflate Pop-out Floats	387	Equations of Motion	411
-		-	
To Those Who Write Emergency Pr 387	rocedures	Control Margin / Limitations on Cor 411	ntrols
Emergencies Caused by Vibrations	and	Head and Mast Bending Moments	411
Noise	388	Longitudinal Cyclic	412
22		Forward Cyclic	412
32 Multi-Engine Helicopters.	389	Aft Cyclic	412
General Introduction	389	Lateral Cyclic	412
Terms	389	Up Collective Down Collective	413 413
Other Differences	390	Tail Rotor	413 413
		Lesser Known Effects	413
Why are AEO and OEI Limits Different Power Matching - Non–FADEC Engin			413
Left Side vs. Right Side	393	Cross–Coupling Lock Number	413 414
OEI Performance	393	Rotor Head Type Effect on CG Range	414
Level Flight	393	Solving Aerodynamic Problems	415
Best Angle of Climb Airspeed (Again)		Wings	415
Engine Failures in Multi-Engine He		Rudders	415
395	ncopicis	Horizontal Stabilizers	415
Engine–Related Emergencies	395	Vertical Stabilizers	416
Training Mode In FADEC Engines	393 397	End Plates	416
Category A or Category B?	398	Gurney Flaps and Blunt Trailing Edges	s 416
Common Points About Category A	399	Tail Boom Strakes	416
Using Everything You've Got	399	More Aerodynamic Fixes	417
Different Profiles	400	How We Control the Helicopter	417
Approach and Landings	401	24	
Use of Contingency Power	401	34 Further Peculiarities of Th	ie
General Criteria for Takeoff Techniqu	es 402	Helicopter	419
Heliport Takeoff Techniques	402	Introduction	419
Vertical Climb	402	Vibrations	419
Back-Up Technique	402	Types Of Vibrations	419
'Sideways Slide' Technique	403	Determining The Type of Vibration	419
Where to Practice Single Engine Tech	niques 403	Sources	420
33 g. 1:1: 1.0 . 1.6:1		Solutions to Vibrations	423
33 Stability and Control of th		Solving Track and Balance Problems	425
Helicopter	405	Ground Resonance	425
Weight and Balance	405	On Start-up	425
Weight and CG Calculations	405	Resonance During Landings or Takeofj	426
Weight and Balance Effects	406	Tail Rotor Control	427
Inherent Sideslip	407	Loss of Tail Rotor Effectiveness	428
Cross-Coupling of CG Effects	408	Wingovers or Crop Duster Turns	429
Keel Area Ratio, or Weathercock E	ffect408	Rapid Rolling	432

Underslung Loads	432	IFR Flight Envelope	455
Knowing How Much it Weighs	432	Why is Helicopter IFR Difficult?	456
Why No Cargo Hook Weighing Device	s? 433	Disorientation	456
Watching the Load	434	Useful Instrument Flying Exercises	457
Problems	434	Inadvertent IMC	457
CRAP Method of Load Obedience	435	Autorotations at Night, in Clouds, et	ic.458
Weird Underslung Loads	435	Instrument Flying Rules (IFR)	459
Flight Path Planning	435	GPS and IFR	459
Emergencies With Underslung Loads	435	Helicopter Only Approaches	459
Training For Underslung Loads	436	27	~
Automatic Flight Control Systems and Underslung Loads	436	37 Automatic Flight Control S	ystems
Uncommanded Jettison of Underslung		461	
_	437	Introduction	461
High Altitude Flying		Definitions	461
Icing	437	Why install an AFCS?	461
Why is Icing So Bad?	438	Hierarchy of an AFCS	462
Snow	439	AFCS and the Big Picture of Control	463
Flying in Your Own Dust	439	Internal vs. External Conditions	463
Mast Bumping	440	Components of An AFCS	463
Causes for Mast Bumping	440	Series Actuator	465
Too Much Sideslip	441	Parallel Actuators	466
Other Causes of Mast Bumping	441	Combined Systems	468
What to Do In the Event of Mast Bump	ing 442	Types of AFCS	468
Training to Prevent Mast Bumping	442	Rate Damping Systems	468
Design Eye Point	442	Stability Augmentation System (SAS)	468
25		Pilot Commanded Inputs	469
35 Other Helicopter Types	. 443	Retrimming	470
Brief history	443	Stability and Control Augmentation Sys	
Coaxial	443	(SCAS).	470
Tandem	444	Attitude Based Stabilization Systems Hybrid Systems	471 472
Synchrocopter or Intermeshing Rotors	446	•	
Coanda Effect	446	Automatic Trim Systems	472
Main Blades	446	AFCS 'Upper' Modes	473
Tail Boom	447	Definition Problems	473
Tip Jets	447	Attitude Datum Re-Adjustment	474
Kaman Servo–Flap Controls	448	Heading Hold and Coordinated Turns	474
Replacing the Tail Rotor	449	Hover and Low Speed	474
Fenestron/Ducted Tail Rotor	449	Forward Flight	475
NOTAR	450	In-between Airspeeds	475
Other Types	450	Autopilots	475
		Basic Autopilot.	476
36 Night and Instrument Flyir	19453	Operational Autopilot.	476
Introduction		Altitude or Height Hold	476
niroauction Night Flying	453 453	Radio/Radar Altitude Hold	477
Engine Failures at Night	454	Speed Hold in the Low Airspeed Regio	
Night Vision Goggles (NVG)	454	Programmed Maneuver	477
The Myth of Night VFR	454	Complex Helicopter AFCS Automatic Transition to the Hover	478 479
Instrument Flying	455	Transition from Cruise to Hover	479 479
		I WINSTON I OIL CIWISC WILL TO TO	

Radio Coupled Operations	480
Advanced Concepts	480
Side Arm Controllers	480
Failures of the AFCS	481
Minimum Height for Engaged AFCS	481
AFCS Disconnect Switches	481
38 Miscellaneous Musings	s483
Type Ratings	483
How To Survive	483
Technical Examinations	483
Minimum Equipment Lists (MEL)	484
Using GPS Intelligently	484
How Best to Use the Magic	485
Myths of the Helicopter	485
'Tail Rotor Stall'	485
'Pendulum Effect'	485
'Stick Reversal'	486
Torque Limiters	486
Health, etc.	487
Smoking	487
Fluids, Bodily	487
Stress	488
Glasses	488
Safety General	488
Personal Equipment	488
Helmets	488
Immersion Suits	490
The Helicopter is Not a Winch or Bu 490	ılldoze
Good Examples vs. Bad Examples	490
What Good Pilots Do	490
Simulators	491
Learning to Say No	492
Noise	492
39 Definitions	
40 Bibliography	501

MATH AND PHYSICS REVISITED

In order to understand how a helicopter operates, it is necessary to have an understanding of the principles controlling physical objects, as well as the mathematical basis for some of the calculations that are needed.

Not everyone is an engineer, and fewer have studied advanced mathematics or physics. I've made an attempt to simplify the explanations and minimize the equations*, however, some are unavoidable. This chapter should explain the fundamentals of the physical laws important to helicopters.

Vectors

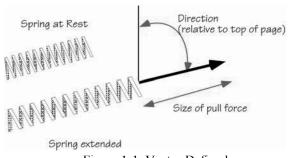


Figure 1-1 Vector Defined

One of the things that isn't easy to immediately grasp is the concept of a *vector*. Since vectors are used a lot in this book, take the time to understand what they mean.

A vector is a way to represent graphically, something with both size and direction. Take a spring for example. It's not possible to pull on a spring without a direction of pull. This gives a force (size) and

direction of pull. This can be represented by a vector. Normally the direction of pull is of no importance but it is for us.

NEWTON'S LAWS

If you don't remember much from high school physics, you should remember Sir Isaac Newton's three laws[†]. Helicopters may not have studied physics or law, but they do obey these three.

Newton's First Law

A body tends to stay at rest or in motion in a straight line unless disturbed by some external force.

In simple terms, if you want to change the uniform (steady) motion in a straight line of an object, you need to apply an external force to it. If you want to turn a corner in a car, you have to apply an external force to the car, (the friction of the tires on the road is such a force - try turning a car on ice to show how this is true). If you want to turn a helicopter, or move a helicopter that is hovering, you need to apply an external force to the body of the helicopter.

In steady motion, all the forces are in balance. Throw the forces out of balance or add an external force and the forces attempt to re-balance themselves while the motion is changed to stay in a (new) uniform motion.

^{*} Evidently each equation in a book reduces the number of readers by 50%, and I want to keep both of you.

[†] What happened before Newton came along is anybody's guess. Things must have been pretty chaotic.

Newton's Second Law

Force is proportional to Mass times Acceleration.

What does this mean? In simple terms it means, with identical acceleration (i.e. the same gravity) a large mass will exert a greater force than a smaller one. Sounds so simple, but remember gravity is an acceleration, so we often confuse mass and weight (weight is a force). Newton's Third Law

For every action there is an equal and opposite reaction.

Sounds simple enough if two people are standing on a perfectly smooth, frictionless surface, and one pushes against the other, both will move apart. Since a helicopter in a zero airspeed hover has very little friction acting against it, the action of turning the main rotor tends to want to rotate the fuselage the opposite way. More about this important fact later.

OTHER PHYSICS AND MATHS TERMS

Momentum and Inertia

Momentum is the mass of a body multiplied by its velocity. *Inertia* is the resistance to change (stay at rest, or in uniform motion in a straight line). A body at rest has zero momentum, but it does have inertia. It is still necessary to apply a force to a resting body to make it move (i.e. overcome inertia). Momentum and inertia are important concepts for flying helicopters because a heavy helicopter has a higher inertia than a light one, and requires greater forces to change its flight path.

Speed

Speed is the rate of change of distance per unit of time. For example, a helicopter that travelled 100 nautical miles over the ground in one hour has a ground speed of 100 Knots (nautical miles per hour).

Velocity

Velocity is speed *and* direction. Our helicopter with a ground speed of 100Knots must be going somewhere, so we need to say where - for example, a speed of 100Knots on a track of North. Since it's pretty hard to have speed without direction, we often confuse these two terms. When we use velocity (instead of speed) we are using a vector.

Acceleration

Acceleration is not just an increase in speed, as we often think. It is *rate of change of velocity*. Since velocity has speed and direction, acceleration can be either the rate of change of speed or rate of change of direction. Slowing down is an acceleration (typically called negative acceleration). Turning in forward flight is acceleration. Turning in a zero-groundspeed hover is not acceleration of velocity (since you're going nowhere...).

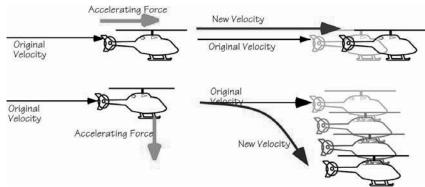


Figure 1-2 Accelerations

Figure 1-2 shows two accelerations - one pushing to change the direction of velocity, and in the other case to change the speed. Thus, acceleration has both magnitude and direction, it too is a vector.

Equilibrium

Derived from the Greek word meaning equal amounts of librium*, it means everything in balance. This implies zero acceleration.

VECTORS, RESULTANTS AND RESOLVING

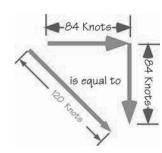
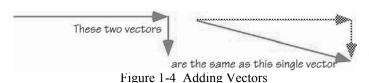



Figure 1-3 Resolving Vectors

Something with both magnitude and direction (such as a velocity) can be considered as a vector. The velocity has both magnitude (speed) and direction. Vectors can be added, multiplied or split apart if appropriate units are used.

For example, a helicopter heading southeast (135°) at an airspeed of 120 Knots has a velocity to the east of 84 Knots and to the south of 84 Knots, as shown in Figure 1-3. This is relatively easy to see, and is called *resolving* the airspeed to two different axes.

The opposite of resolving an existing velocity is combining two or more velocities. If two velocities are combined, for example air with both horizontal and vertical velocity, then

the resultant is as shown Figure 1-4. Here's a more complex example.

^{*} possibly an early Greek tranquilizer?

Moments and Couples Some Fundamentals

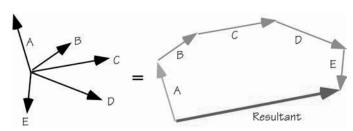


Figure 1-5 Adding More than Two Vector

In the helicopter world, the vectors we most often want to resolve are force vectors.

For example, a thrust vector from a rotor blade will have components that are relevant in both the vertical and horizontal axes.

MOMENTS AND COUPLES

Moments

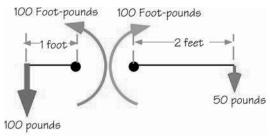


Figure 1-6 Moments Defined

There will be mention later of *moments* and *moment-arms*, and this is as good a time as any to clarify them. For those who have not encountered a moment before, it is the reaction at a pivot point of a force (e.g. 50 pounds) multiplied by the distance (e.g. 2 feet) from the pivot point that the force acts about, giving units of foot—pounds.

A small force acting at a long distance may have the same moment as a large force acting at a small distance, shown in Figure 1-6. Moments

are important in many descriptions of how helicopters work. The symbol for a moment is an circular arrow, as shown Figure 1-6.

A playground teeter-totter is a good example of the use of moments. If you're an adult trying to balance a small child on the other end, you know you'll have to sit close to the center when the child sits at the very end. Your weight multiplied by the distance to the pivot point must equal the weight of the child on the other end multiplied by their distance to the pivot point in order for you to balance each other.

Torque is another word for a moment.

Couple

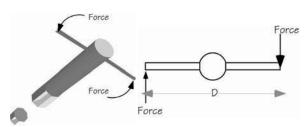


Figure 1-7 Couple Defined

A *Couple* is similar to a moment, except there are two forces acting in equal and opposite parallel directions. The main difference between a moment and a couple is that the couple normally is considered to have two equal forces. Figure 1-7 shows a couple. There is no lateral reaction at the pivot for a couple.

^{*} Sorry about the pun. This is the first of a great many. You've been warned.

Some Fundamentals Balance of Forces

BALANCE OF FORCES

It is important to understand how forces balance (or don't balance). Consider the following two examples. In Figure 1-8 a), the forces and moments are in balance- there is no turning moment and no net reaction at the pivot point. In Figure 1-8 b) however, the moments may be in balance, but the forces are not. There is a net sideways reaction at the pivot point of 30 lb.

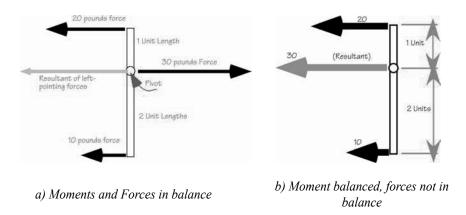


Figure 1-8 Forces and Moments

Dimensional Correctness^{*}

In the world of physics, one of the ways to check to make sure your formulae are correct is to ensure the units work out correctly. This is easy to do when you use consistent units.

Distance and Time

We use units of distance and time quite a bit in aviation. The units we will use in this book for the purposes of talking about physics are L for distance, and T for time.

MASS, FORCE, ENERGY AND WORK

Mass

Mass is not a force. We mortals who spend nearly all our time standing or sitting in an environment with a constant one gravity (1G) environment suffer great confusion over the difference between mass and weight.

Mass has units in the Imperial units system of *slugs*, but we commonly (and incorrectly) use pounds instead. Since most of the time we're only concerned about the effects of mass in a 1G environment[†] we'll perpetuate the confusion by adopting the simple common term pound (lb.) to describe mass.

In the metric system, mass is in units of Kilograms (kg).

Weight is a force. It has units of pound-force (lbf.) or Newtons (N).

Some books use pounds-force (lbf) or pounds-mass (lbm) to distinguish between mass and weight. The difference between mass and weight may be more clear if you think of two lumps of the same material, one on a weigh scale, and the other on a balance bar, as shown in Figure 1-9 a). In a 1G situation (i.e. sitting still on the earth) both methods of measuring will show the same value. Put them both in a whirling centrifuge, or an

[†] helicopters don't do a lot of maneuvering that would increase the G level significantly, and all the performance things we're concerned with happen in a 1G environment, so it's not going to screw things up too much.

^{*} No, not some new version of political correctness, this has existed for years. And it works.