

AVIATION MAINTENANCE TECHNICIAN CERTIFICATION SERIES

HELICOPTER AERODYNAMICS STRUCTURES AND SYSTEMS

12

The publishers of this Aviation Maintenance Technician Certification Series welcome you to the world of aviation maintenance. For additional educational tools created to prepare candidates for licensure, contact Aircraft Technical Book Company.

We wish you good luck and success in your studies and in your aviation career!

EASA CAT-A TEXTBOOKS ARE AVAILABLE IN EBOOK DOWNLOAD, OR ONLINE READER

Special thanks to our instructors, contributors, and authors
Authors - Laurence Peyrebrune and Dominique Couture
Contributor - Peter A. Vosbury

Layout and Design by Michael Amrine

VERSION	EFFECTIVE DATE
002	2025.04

Copyright © 2016, 2025 — Aircraft Technical Book Company. All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system, transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher.

To order books or for customer service, please call +1 (970) 726-5111, or visit us online at www.actechbooks.com

Update notices for this book will be available online at www.actechbooks.com/revisions.html
If you would like to be notified when changes occur, please join our mailing list at www.actechbooks.com

	VERSION	EFFECTIVE DATE	DESCRIPTION OF REVISION(S)
Ī	001	2016.01	Module creation and release.
	002	2025.04	Regulatory update for EASA 2023-989 compliance.

Module was reorganized based upon the EASA 2023-989 subject criteria. Enhancements included in this version 002 are:

- 12.7.2 Test Equipment For Avionics Added topic.
- 12.10 Portable Fire Extinguishers Added topic.
- 12.12 Servicing Hydraulic Systems Added topic.
- 12.16 Pneumatic/Vacuum Systems Submodule deleted per EASA 2023-989.
- 12.18 Printing, Structural Monitoring Content deleted per EASA 2023-989.

HELICOPTER AERODYNAMICS	Bearingless Rotor Systems
STRUCTURES AND SYSTEMS	Blade Dampers: Function And Construction 2.10
Revision Log	Hydraulic Damper2.10
Measurement Standards iv	Multiple Disk Damper2.11
Basic Knowledge Requirementsv	Elastomeric Damper
Part 66 Basic Knowledge Requirements vi	Rotor Blades: Main And Tail Rotor Blade Construction And
Table of Contentsix	Attachment
	Main And Tail Rotor Blade Construction And Attachment 2.11
12.1 THEORY OF FLIGHT — ROTARY WING AERODYNAMICS 1.1	Wooden Rotor Blades
Historical Perspective1.1	Metal Rotor Blades
Introduction To Theory of Flight	Composite Rotor Blades
Terminology1.4	Blade Attachment
Effects of Gyroscopic Precession	Tail Rotor Blade Construction And Attachment 2.13
Torque Reaction and Directional Control 1.6	Blade Construction
Torque Reaction	Blade Attachment
Directional Control	Fenestron Tail Rotors
Dissymmetry Of Lift, Blade Tip Stall 1.7	Fenstron Blade Construction2.15
Vertical Flight	Fenestron Blade Attachment
Forward Flight1.8	NOTAR Type Anti-Torque Rotor
Translational Lift1.8	NOTAR Blade Construction 2.15
Dissymmetry Of Lift	NOTAR Blade Attachment 2.16
Translating Tendency and Correction	Trim Control, Fixed And Adjustable Stabilizers 2.16
Coriolis Effect And Compensation	Vertical And Horizontal Stabilizers 2.16
Coning	System Operation: Manual, Hydraulic, Electrical And
Coriolis Effect	Fly-By-Wire
Vortex Ring State, Power Settling, Overpitching 1.10	Manual Operation
Vortex Ring State/Power Settling	Hydraulic Operation
Overpitching	Electrical Fly-By-Wire Operation
Autorotation	Stability Augmentation System (SAS) 2.17
Hovering Autorotation	SAS Components
Ground Effect	SAS Operations
Submodule 1 Practice Questions	Artificial Feel
Submodule 1 Practice Answers	Friction
	Elastic Rod
12.2 FLIGHT CONTROL SYSTEMS (ATA 67)2.1	Hydraulic Damper2.19
Introduction	Balancing And Rigging
Cyclic Control	Rods
Collective Control	Transmission Unit
Throttle Control	Relay
Correlator2.3	Balancing
Governor	Bellcrank
Swashplate	Rigging
The Cyclic Movement And The Swashplate 2.3	Submodule 2 Practice Questions2.25
The Collective Movement And The Swashplate 2.3	Submodule 2 Practice Answers
Yaw Control: Anti-Torque Control, Tail Rotor, Bleed Air 2.4	
Anti-Torque Control, Tail Rotor2.4	12.3 BLADE TRACKING AND VIBRATION ANALYSIS (ATA 18)3.1
The Tail Collective Hinge	Introduction
The Tail Flapping Hinge	Vibration Types
The Tail and Pedal Connection	Imbalance
Different Solutions	Track
The Fenestron Solution	Ground Resonance
The Bleed Air NOTAR System2.7	Vibration Reduction Methods
Main Rotor Head: Design And Operation Features 2.7	Amplitude Reduction
Fully Articulated Rotor Systems	Vibration Opposition
Semi-Rigid Rotor Systems	Static And Dynamic Balancing
Rigid Rotor Systems	Static Balancing

Dynamic Balancing	Drains
Rotor Alignment	Ventilation
Main Rotor And Tail Rotor Tracking	System Installation Provisions
Submodule 3 Practice Questions	Lightning Strike Protection Provisions
Submodule 3 Practice Answers	Bonding Procedures and Precautions 5.7
	Section B
12.4 TRANSMISSION4.1	Construction Methods of: Stressed Skin Fuselage, Formers,
Introduction: Power Transmission 4.1	Stringers, Longerons, Bulkheads, Frames, Doublers, Struts, Ties,
Gear Boxes, Main and Tail Rotors	Beams, Floor Structures, Reinforcement, Methods of Skinning and
Gear Boxes	Anti-Corrosive Protection
Main and Tail Rotors	Truss Type
Clutches, Free wheel Units and Rotor Brakes 4.4	Monocoque Type
Clutches	Bonded and Composite Construction 5.9
Free Wheel Units4.4	Formers, Stringers, Longerons, Bulkheads, Frames 5.9
Rotor Brakes	Doublers
Tail Rotor Drive Shafts, Flexible Couplings, Bearings, Vibration	Struts and Ties
Dampeners and Bearing Hangers	Beams, Floor Structures, and Reinforcements 5.9
Tail Rotor Drive Shafts	Skinning5.9
Flexible Couplings4.5	Anti-Corrosive Protection5.9
Bearings	Pylon, Stabilizer, and Undercarriage Attachments 5.10
Bearings for Transmissions	Fuselage and Tail Structure 5.10
Maintenance of Bearings	Pylon
Vibration Dampers	Stabilizer
Hydraulic Damper	Undercarriage Attachments5.10
Computer Controlled Dampers 4.6	Seat Installation
Bearing Hangers	Doors: Construction, Mechanisms, Operation, and Safety
Submodule 4 Practice Questions	Devices
Submodule 4 Practice Answers	Windows and Windscreen Construction
	Fuel Storage
12.5 AIRFRAME STRUCTURES5.1	Firewalls
Airworthiness Requirements for Structural Strength 5.1	Engine Mounts
Certification Specification (CS) 27	Structure Assembly Techniques: Riveting, Bolting, Bonding 5.12
Certification Specification (CS) 29 5.1	Riveting, Bolting
Structural Classification, Primary, Secondary, Tertiary 5.2	Bonding
Primary Structure	Methods of Surface Protection: Chromating, Anodizing, Painting,
Secondary Structure	And Cladding
Tertiary Structure	Anodizing
Fail Safe, Safe Life, Damage Tolerance Concepts 5.2	Chromating
Fail-Safe Concept	Painting
Examples of Fail Safe Design Techniques	Cladding
Safe Life Concept	Surface Cleaning
Damage Tolerance Concept	Exterior Aircraft Cleaning 5.13
Zonal and Station Identification Systems	Snow and Ice
Zonal System	Salt Air Operating Environment
Station Identification System	Acrylic Windows
Stress, Strain, Bending, Compression, Shear, Torsion, Tension,	Airframe Symmetry: Methods of Alignment and
Hoop Stress, and Fatigue	Symmetry Checks5.14
Stress and Strain	Lateral Control of the Tail Position
Tension	Horizontal Control of the Tail Position 5.14
Compression	Submodule 5 Practice Questions
Torsion	Submodule 5 Practice Answers
Shear 5.5	
Bending	12.6 AIR CONDITIONING (ATA 21)6.1
Hoop Stress	12.6.1 - Air Supply 6.1
Metal Fatigue5.6	Sources of Air Supply Including Engine Bleed and Ground Cart 6.1
Drains and Ventilation Provisions 5.6	Dam Air

Bleed Air	Horizontal Situation Indicator, Turn And Slip Indicator,
Bleed Air From an Engine	Turn Coordinator7.9
Bleed Air From an APU 6.1	Gyroscopic Principles 7.9
Ground Cart	Ring Laser Gyro
Heated Air Sources	Micro Electro Mechanical System (MEMS) 7.10
Heaters6.2	Artificial Horizon
Heat Exchangers	Attitude Director7.12
Combustion Heaters	Direction Indicator
12.6.2 - Air Conditioning	Horizontal Situation Indicator 7.13
Air Conditioning Systems	Turn And Slip Indicator 7.13
Vapor Cycle Air Conditioning	Turn Coordinators
Basic Vapor Cycle	Compasses
Vapor Cycle Air Conditioning System Components 6.3	Direct Reading, Remote Reading 7.14
Refrigerant6.3	Direct Reading
Receiver Dryer	Magnetic Deviation
Thermal Expansion Valve	Magnetic Variation 7.16
Evaporator	Dip Error
Compressor	Vertical Magnetic Compasses 7.16
Condenser	Remote Reading 7.16
Service Valves6.5	Vibration Indicating Systems (HUMS) 7.17
Air-Cycle Air Conditioning	Glass Cockpit
System Operation	Other Aircraft System Indications 7.19
Pneumatic System Supply 6.7	Remote Sensing And Indications 7.19
Component Operation 6.7	Synchro Type Remote Indicating Instruments 7.19
Pack Valves	DC Selsyn Systems 7.19
Bleed Air Bypass 6.7	AC Synchro Systems 7.19
Primary Heat Exchanger6.7	Fuel And Oil Pressure Gauges
Refrigeration Turbine Unit and Secondary Heat Exchanger . 6.8	Mechanical Movement Indicators
Refrigeration Bypass Valve	Tachometers
Distribution System	Electric Tachometers 7.20
Air Ducts 6.9	Collective Pitch Transmitter
Flow and Temperature Control Systems 6.9	Temperature Measuring Instruments
Flow Control System	Non-Electric Temperature Indicators
Temperature Control System	Electric Temperature Indicators
Air Conditioner Control Panel	Thermocouple Temperature Indicators
Temperature	Turbine Gas Temperature Indicating Systems
Fan Speed	Pressure Measuring Instruments
Mode Selection	Engine Oil Pressure Instruments
Protection and Warning Devices	Manifold Pressure Instruments
Submodule 6 Practice Questions	Fuel Pressure Instruments
Submodule 6 Practice Answers	Hydraulic Pressure Instruments
Submodule of Factice Miswers	Vacuum Pressure Instruments
12.7 INSTRUMENTS/AVIONICS SYSTEMS	Pressure Switches 7.28
Introduction	12.7.2 - Avionics Systems
Classification By Type	(ATA 22, 23, 34)
Flight Instruments 7.3	Autoflight (ATA 22)
•	Stability Augmentation System
Engine Instruments	•
Navigation Instruments	Basic Autopilots (3-Axes)
Pitot-Static Instruments. 7.4	Superior Modes Of 3-Axes Autopilots
Altimeter, Air Speed Indicator, Vertical Speed Indicator 7.4 Pitot Tibos And Static Vents Principle	Superior Modes Of 4-Axes Autopilots
Pitot Tubes And Static Vents Principle	Automatic Transition To The Hover
Altimeters	Communications (ATA 23)
Airspeed Indicators	Very High Frequency (VHF) Radios
Vertical Speed Indicator	High Frequency (HF) Radios
Gyroscopic Instruments	Satellite Communication Systems
Artificial Horizon, Attitude Director, Direction Indicator,	Service Interphone System 7.31

Navigation Systems (ATA 34)	Alternator Drive8.5
VOR Navigation System	AC Alternator Control Systems 8.5
Automatic Direction Finder (ADF) 7.33	Emergency Power Generation 8.5
Radio Magnetic Indicator (RMI) 7.35	Voltage Regulation And Circuit Protection 8.6
Instrument Landing Systems (ILS) 7.35	Voltage Regulation
Localizer	Parallel Generator Operations
Glideslope	Differential Voltage 8.7
Compass Locators	Generator Controls For High Output Generators 8.7
Marker Beacons	Other Voltage Regulation 8.7
Microwave Landing System (MLS) 7.37	Carbon Pile Regulators
MLS Expansion Capabilities	Three Unit Regulators
Flight Director Systems; Distance Measuring	Circuit Protection
Equipment (DME)	Reverse Current Sensing
Area Navigation Systems (RNAV) 7.40	Over Voltage Protection
Flight Management System	Over Excitation Protection
Satellite Navigation Systems	Current Limiting Devices
Inertial Navigation System (INS) 7.41	Fuses
Air Traffic Control Transponder, Secondary	Circuit Breakers
Surveillance Radar	Power Distribution8.9
Secondary Surveillance Radar	Inverters, Transformers, And Rectifiers 8.9
Transponder Tests And Inspections 7.44	Inverters
Altitude Encoders	Rotary Inverters
Traffic Alert And Collision Avoidance System (TCAS) 7.44	Permanent Magnet Rotary Inverters
Weather Avoidance Radar	Inductor Type Rotary Inverters 8.10
Radio Altimeter (RA) 7.45	Static Inverters
Avionics General Test Equipment	Transformers
Built in Test Equipment	Voltage Transformers8.12
Avionics Test Equipment	Power Transformers
Multimeters	Audio Transformers
Oscilloscope	RF Transformers
Pitot-Static Test Equipment	Autotransformers 8.12
Specialized Test Equipment	Current Transformers 8.12
Data Bus Analyzers	Power In Transformers 8.13
Test Equipment Calibration	Rectifiers
Submodule 7 Practice Questions	Transformer Rectifiers
Submodule 7 Practice Questions 7.50 5.50	External/Ground Power
admodule / Tractice rinswers	Submodule 8 Practice Questions
2.8 ELECTRIC POWER (ATA 24)8.1	Submodule 8 Practice Answers
Batteries: Installation And Operation 8.1	Submodule of factice fillsweis
Lead-Acid Batteries	12.9 EQUIPMENT AND FURNISHINGS (ATA 25)9.1
Valve Regulated (Sealed) Lead-Acid Batteries (VRLA) 8.1	Section A
Nickel Cadmium Batteries (NiCd) 8.1	Emergency Equipment Requirements
Lithium-Ion Batteries	Fire Extinguishers
Battery Installation	First-Aid Kits 9.2
Battery Charging	Maintenance of First-Aid Kits 9.2
Constant Voltage Charging	Crew Survival Kits. 9.2
Constant Current Charging8.3	Life Jackets. 9.2
Battery Maintenance	Life Rafts 9.3
Battery Overheating. 8.4	Emergency Locator Transmitter (ELT)
Battery Freezing 8.4	Types of ELTs
,	
Electrolyte Spillage	Emergency Lighting and Marking
Storage of Batteries	Supplemental Oxygen
Battery Ventilation Systems	Determination of Oxygen
DC Power Generation; AC Power Generation	Seats9.4
AC Power Congretion 8.4	Seats

Escape Slides	Discharge Valves	10.6
Seat Belts and Harnesses	Pressure Indication	10.6
CS-29.561 Requirements	Two Way Check Valve	10.6
Passenger Seats	Discharge Indicators	
Crew Seats	Thermal Discharge Indicator (Red Disk)	
Lifting Systems	Normal Discharge Indicator (Yellow Disk)	
Rescue Hoists9.6	Fire Switch	
Electric Hoists	Fire Extinguisher System Maintenance	
Electric Hoist Operation 9.7	Container Pressure Check	
Hover Trim Control	Discharge Cartridges	
Electric Hoist Safety Systems 9.8	Agent Containers	
Hydraulic Hoists	System Tests	
Cargo Hooks	Continuous Loop Fire Detection System	
Four Point Sling Assembly 9.9	Dual Loop Systems Automatic Self Interrogation	
Load Cell	Fire Detection Control Unit (Fire Detection Card)	
Frangible Link	Section B	
Section B	Portable Fire Extinguishers	
Emergency Floatation Systems	Portable Extinguisher Types	
Cabin Layout and Cargo Retention9.10	Halon Fire Extinguishers	
Cargo Retention	Pressurized Water Extinguishers	
Equipment Layout	Non-Suitable Extinguishers	
Cabin Furnishing Installation	Maintenance and Inspection	
Submodule 9 Practice Questions	Submodule 10 Practice Questions	
Submodule 9 Practice Answers	Submodule 10 Practice Answers	
345.110 date / 1 140.100 1 2110 H 010 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10.12
12.10 FIRE PROTECTION (ATA 26)10.1	12.11 FUEL SYSTEMS (ATA 28)	11.1
Fire Protection	Fuel System Layout	11.1
Fire Zones	Gravity Feed Systems	11.1
Fire Prevention	Pressure Feed Fuel System	
Fire and Smoke Detection and Warning Systems	Complex Fuel Systems	
Requirements For Overheat and Fire Detection Systems 10.1	Fuel Tanks	
Thermal Switch Systems	Fuel Tank Construction	
Thermocouple Systems	Integral Fuel Cells	11.2
Continuous Loop Systems	Bladder Fuel Tanks	
Fenwal System	Fuel Tank Repair	
Kidde System	Integral Tanks	
Sensing Element Fault Indication	Bladder Tanks	
Combination Fire and Overheat Warning 10.3	Supply Systems	
Support Tube Mounted Sensing Elements	Fuel Feed	
Dual Loop Systems	Non-Pressurized Fuel Systems	
Fire Detection System Maintenance	Pressurized Fuel Systems	
Flame Detectors	Fuel System Components	
Smoke Detection Systems	Lines And Fittings	
Light Refraction Type	Fuel Valves	
Ionization Type	Manual Valves	
Carbon Monoxide Detectors	Motor Operated Valves	
Carbon Monoxide Chemical Detectors	Solenoid Operated Valves	
Carbon Monoxide Monitors (Sensors)	Fire Shut Off Valves.	
Fire Extinguishing Systems	Fuel Pumps	
Fire Extinguisher Agents	Centrifugal Boost Pumps	
Water - Class A	Ejector Pumps	
Carbon Dioxide (CO ₂) - Class B or C	Fuel Filters	
Dry Powder Chemicals	Gaskets, Seals and Packings	
Halogenated Hydrocarbons - Class A, B, or C	Dumping, Venting And Draining	
Fixed Container Fire Extinguishing Systems	Dumping, Venting Mild Draining	
Containers 10.6	Fuel Vent Systems	
Namualii (18.18	1 00.1 93.10 (29.20.015)	1

Fuel System Drains	Maintenance of Accumulators	7
Cross Feed And Transfer	Heat Exchangers	7
Cross Feed And Transfer	Pressure Generation: Electric, Mechanical, and Pneumatic 12	7
Indications And Warnings	Mechanical, Electrical, And Pneumatic Driven Pumps 12	7
Fuel Quantity Indicating Systems	Hand Pumps	
Ratiometer Type	Single Action Hand Pumps	
Capacitance Type	Double Action Hand Pumps12	.8
Mechanical Type	Rotary Action Hand Pumps	.8
Fuel Flow Meters	Classification Of Pumps	.8
Fuel Heating	Constant Displacement Pumps	.8
Fuel Pressure Gauges	Gear Type Power Pump	.8
Pressure Warning Signal	Gerotor Pump	9
Fueling And Defueling	Piston Pumps	9
Fueling	Vane Pump	9
Refueling By Gravity	Variable Displacement Pumps	9
Pressure Refueling	Hydraulic Seals	10
Defueling	Packings	10
Fire Hazards When Fueling Or Defueling 11.14	V-Rings	10
Fuel Contamination	U-Ring	10
Water	O-Rings	11
Solid Particle Contaminants	Gaskets	
Surfactants	Wipers	11
Microorganisms	Emergency Pressure Generation	11
Improper Fuel	Hydraulic Motors	
Submodule 11 Practice Questions	Power Transfer Units (PTUs)	
Submodule 11 Practice Answers	Hydraulic Motor Driven Generators (HMDG) 12.1	
	System Contamination And Filters	
12.12 HYDRAULIC POWER (ATA 29)12.1	Hydraulic Fluid Contamination	
System Layout	Contamination Check	
Open Center Hydraulic Systems	Hydraulic Sampling Schedule	14
Closed Center Hydraulic Systems	Contamination Control	
Evolution Of Hydraulic Systems	Hydraulic System Flushing	15
Hydraulic Power Pack System	Filters	
Modern High Performance Systems	Micron Filters	15
Hydraulic Fluids	Maintenance Of Filters	16
Hydraulic Fluid Properties	Filter Differential Pressure Indicators	16
Viscosity	Pressure Control	16
Chemical Stability	Pressure Relief Valves	16
Flash Point	Pressure Regulators	17
Fire Point	Pressure Reducers	17
Types Of Hydraulic Fluids	Power Distribution	17
Mineral Base Fluids	Shutoff Valves	17
Polyalphaolefin Base Fluids12.3	Selector Valves	17
Phosphate Ester Base Fluids	Check Valves	18
Intermixing of Fluids	Orifice Type Check Valve	18
Compatibility With Aircraft Materials12.4	Sequence Valves	
Hydraulic Reservoirs And Accumulators	Pressure Controlled Sequence Valve	
Reservoirs	Mechanically Operated Sequence Valve	
Non Pressurized Reservoirs	Priority Valves	
Pressurized Reservoirs	Shuttle Valves	
Air Pressurized Reservoirs	Quick Disconnect Valves	
Fluid Pressurized Reservoirs	Hydraulic Fuses	
Accumulators	Hydraulic Actuators	
Types of Accumulators	Linear Actuators	
Spherical	Rotary Actuators	
Cylindrical 12.6	Indication And Warning Systems 12.3	

Interface With Other Systems	Quadricycle Type	14.2
Servicing	Classification of Landing Gear	14.2
Hydraulic Fluid Contamination	Non-Articulated or Telescopic Type	14.2
Contamination Prevention	Articulated or Levered Suspension Type	14.2
Fluid Monitoring12.23	Four-Bar Linkage Mechanism	
Fluid Compatibility	Wheelbase	
Hydraulic System Maintenance and Troubleshooting	Wheel Track	14.3
Checklist	Semi-Articulated or Semi-Levered Suspension Type	14.3
Submodule 12 Practice Questions	Fixed and Retractable Landing Gear	14.4
Submodule 12 Practice Answers	Landing Gear Attachment	14.4
	Landing Gear Elements	14.4
12.13 ICE AND RAIN PROTECTION (ATA 30)13.1	Main Landing Gear Elements	14.5
Ice Formation, Classification and Detection	Shock Strut Assembly	
Types of Aircraft Ice	Nose/Tail Landing Gear Elements	14.5
Clear Ice	Shock Strut Assembly	14.5
Rime Ice	Trailing Arm Assembly	
Gleam Ice	Fork and Axle Assembly	
Icing Effects	Centering Cams (Locating Cams)	
Ice Detection	Landing Gear Material	
Pressure Ice Detectors	Corrosion Protection	
Vibrating Ice Detectors	Shock Absorbing	
Hot Rod Ice Detector	Shock Struts	
Serrated Rotor Ice Detector Head	Shock Strut Construction	
Anti-Icing and De-Icing Systems: Electrical, Hot Air and	Metering Pins	
Chemical	Damping Or Snubbing Devices	
Thermal Anti-Ice Systems	Axles	
Thermal Engine Anti-Ice (EAI)	Valve Fitting Assembly	
Electrical Anti-Ice Systems	Torque Links	
Mechanical De-Icing Systems	Nose Gear Shock Struts	
Chemical Anti-Ice Systems	Tail Bumper Assembly	
Ground Chemical De-Icing	Jacking Points And Towing Lugs	
De-Icing Procedures	Shock Strut Instruction Plate	
Windshield Anti-Icing	Shock Strut Operation	
Windshield Hot Air De-Ice/De-Fog	Servicing Shock Struts	
Rain Repellent and Removal	Bleeding Shock Struts	
Chemical Rain Repellent	Extension/Retraction Systems: Normal And Emergency 1	
Hydrophobic Coatings	Hydraulic Extension And Retraction Systems	
Pneumatic Rain Removal Systems	Selector Valves	
Probe and Drain Heating	Safety Locks	
Thermal Electric Anti-Icing	Downlock And Uplock Mechanisms	
Probe Anti-Ice	Ground Locks	
Drain Anti-Ice	Sequence Valves	
Wiper Systems	Actuators	
Mechanical Wiper Systems	•	
Wash/Wipe Systems	Electric/Hydraulic Extension And Retraction Systems 1	
Submodule 13 Practice Questions	Pneumatic Extension And Retraction Systems	
Submodule 13 Fractice Aliswers		
12.14 LANDING CEAR (ATA 32) 14.1	Emergency Extension Systems	
12.14 LANDING GEAR (ATA 32)	Mechanical Emergency Extension Systems	
System Description And Operation	Hydraulic Emergency Extension Systems	
	Wheels, Tyres, Brakes	
Landing Gear Types And Construction	Wheels	
Wheels	Wheel Construction	
Tail Wheel Type	Inboard Wheel Half	
Tricycle Nose Wheel Type 14.2		14.18 14.19
	A AUTOMATO AN TOTAL LIGHT	-T. 17

On Aircraft Wheel Inspection	14.19	Automatic Adjuster Pins	14.37
Proper Installation		Torque Tube	
Axle Nut Torque	14.19	Brake Housing And Piston Condition	
Off Aircraft Wheel Inspection		Seal Condition	14.37
Disassembly Of The Wheel	14.19	Brake Malfunctions And Damage	14.37
Inspection Of The Wheel Halves	14.20	Overheating	14.38
Tie Bolt Inspection	14.20	Dragging	14.38
Key And Key Screw Inspection		Chattering Or Squealing	14.38
Fusible Plugs	14.20	Steering	14.38
Balance Weights	14.20	Nose Wheel Steering	14.38
Wheel Bearings	14.21	Shimmy Dampers	14.38
Inspection Of Wheel Bearings		Piston Type	
Lubrication of Bearings		Vane Type	
Tyres And Tubes		Non-Hydraulic Shimmy Damper	
Tyre Classification		Skids And Floats	
Ply Rating		Skids	
Tube Type Or Tubeless		Skids And Shock Absorbers	
Bias Ply Or Radial		Skid Dampeners	
Tyre Terminology		Skid and Wheels	
Bead		Floats	
Carcass Plies.		Fixed Utility Floats	
Tread		Emergency Pop-Out Floats	
Sidewall		Section B	
Helicopters Tyre Types		Sensors	
Tyre Inspection		Indications And Warning	
Inflation		Safety Switches	
Tread Condition.		Squat Switches, Proximity Sensors	
Tread Damage		Air-Ground Sensing.	
Sidewall Condition		Submodule 14 Practice Questions	
Tubes		Submodule 14 Practice Questions Submodule 14 Practice Answers	
		Submodule 14 Fractice Aliswers	14.40
Tube Construction And Selection.		12 15 LICHTS (ATA 22)	15 1
Tube Storage And Inspection		12.15 LIGHTS (ATA 33)	
Tyre Mounting.		External: Navigation, Landing, Taxiing, Ice	
Tube Type Tyres.		Navigation/Position Lights	
Tyre Balancing		Anti-Collision Lights	
Brakes.		Rotating Beacons	
Types And Construction Of Helicopter Brakes		Strobe Lighting	
Floating Disc Brakes		Landing Lights	
Fixed Disc Brakes		Taxi Lights	
Dual Disc Brakes		Ice Inspection Lights	
Multiple Disc Brakes		Internal: Cabin, Cockpit, Cargo.	
Electric Brakes		Fluorescent Lights	
Brake Actuating Systems		Fluorescent Lamp Operating Circuit	
Independent Master Cylinders		Flight Deck Lighting	
Boosted Brakes.		Integral Instrument Lighting	
Parking Brakes		Cabin Lighting	
Emergency Brakes		Cargo and Baggage Compartments Lights	
On Aircraft Servicing		Emergency Lighting	
Lining Wear.		Electroluminescence	
Air In The System		Self Illuminating Signs	
Fluid Type	14.36	Floor Mounted Escape Path Lighting	
Inspection For Leaks		Emergency Exit Lighting Activation	
Proper Bolt Torque.		Submodule 15 Practice Questions	
Off Aircraft Brake Servicing and Maintenance		Submodule 15 Practice Answers	. 15.8
Bolt And Threaded Connections.	14.37		

12.16 (RESERVED)	16.1
This submodule is reserved by EASA for future use. $\dots\dots$	16.1
12.17 INTEGRATED MODULAR AVIONICS (IMA) (ATA 42)	17.1
Integration Of Avionics	
Digital Data Bus Use Reduces Wiring	
Core Systems	
Core Processor Input/Output Module (CPIOM)	
Network Components	
Submodule 17 Practice Questions	
Submodule 17 Practice Answers	
12.18 ONBOARD MAINTENANCE SYSTEMS (ATA 45)	18.1
Central Maintenance Computers	
Built-In Test Equipment (BITE)	
Data Loading Systems	
Electronic Library System	
Submodule 18 Practice Questions	
Submodule 18 Practice Answers	
Submodule 10 I factice / this wers	10.0
12.19 INFORMATION SYSTEMS (ATA 46)	19.1
12.19 INFORMATION SYSTEMS (ATA 46)	 19.1 19.1
12.19 INFORMATION SYSTEMS (ATA 46)	19.1 19.1 19.1
12.19 INFORMATION SYSTEMS (ATA 46)	19.1 19.1 19.1 19.1
12.19 INFORMATION SYSTEMS (ATA 46) Adoption by the Helicopter Operators. Aircraft General Information Systems. The Airbus System Network Server System.	19.1 19.1 19.1 19.2
12.19 INFORMATION SYSTEMS (ATA 46) Adoption by the Helicopter Operators. Aircraft General Information Systems The Airbus System Network Server System Secure Communication Interface	19.1 19.1 19.1 19.2 19.2
12.19 INFORMATION SYSTEMS (ATA 46) Adoption by the Helicopter Operators. Aircraft General Information Systems The Airbus System Network Server System Secure Communication Interface Central Data Acquisition Module.	19.1 19.1 19.1 19.1 19.2 19.2 19.2
12.19 INFORMATION SYSTEMS (ATA 46) Adoption by the Helicopter Operators. Aircraft General Information Systems The Airbus System Network Server System Secure Communication Interface Central Data Acquisition Module. Flight Deck Information System	19.1 19.1 19.1 19.1 19.2 19.2 19.2 19.2
12.19 INFORMATION SYSTEMS (ATA 46) Adoption by the Helicopter Operators. Aircraft General Information Systems The Airbus System Network Server System Secure Communication Interface Central Data Acquisition Module. Flight Deck Information System Maintenance Information System	19.1 19.1 19.1 19.1 19.2 19.2 19.2 19.2 19.2 19.2
12.19 INFORMATION SYSTEMS (ATA 46) Adoption by the Helicopter Operators. Aircraft General Information Systems The Airbus System Network Server System Secure Communication Interface Central Data Acquisition Module. Flight Deck Information System Maintenance Information System Electronic Logbooks	19.1 19.1 19.1 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
12.19 INFORMATION SYSTEMS (ATA 46) Adoption by the Helicopter Operators. Aircraft General Information Systems The Airbus System Network Server System Secure Communication Interface Central Data Acquisition Module. Flight Deck Information System Maintenance Information System	19.1 19.1 19.1 19.2 19.2 19.2 19.2 19.2 19.2 19.3
12.19 INFORMATION SYSTEMS (ATA 46) Adoption by the Helicopter Operators. Aircraft General Information Systems The Airbus System Network Server System Secure Communication Interface Central Data Acquisition Module. Flight Deck Information System Maintenance Information System Electronic Logbooks Passenger Cabin Information System.	19.1 19.1 19.1 19.2 19.2 19.2 19.2 19.2 19.3 19.3
12.19 INFORMATION SYSTEMS (ATA 46) Adoption by the Helicopter Operators. Aircraft General Information Systems The Airbus System Network Server System Secure Communication Interface Central Data Acquisition Module. Flight Deck Information System Maintenance Information System Electronic Logbooks Passenger Cabin Information System. Cabin Wireless Connectivity.	19.1 19.1 19.1 19.2 19.2 19.2 19.2 19.2 19.3 19.3 19.3
12.19 INFORMATION SYSTEMS (ATA 46) Adoption by the Helicopter Operators. Aircraft General Information Systems The Airbus System Network Server System Secure Communication Interface Central Data Acquisition Module. Flight Deck Information System Maintenance Information System Electronic Logbooks Passenger Cabin Information System. Cabin Wireless Connectivity. Leaky Line Antennas Miscellaneous Information Systems Submodule 19 Practice Questions.	19.1 19.1 19.1 19.2 19.2 19.2 19.2 19.3 19.3 19.3 19.3 19.5
12.19 INFORMATION SYSTEMS (ATA 46) Adoption by the Helicopter Operators. Aircraft General Information Systems The Airbus System Network Server System Secure Communication Interface Central Data Acquisition Module. Flight Deck Information System Maintenance Information System Electronic Logbooks Passenger Cabin Information System. Cabin Wireless Connectivity. Leaky Line Antennas Miscellaneous Information Systems.	19.1 19.1 19.1 19.2 19.2 19.2 19.2 19.3 19.3 19.3 19.3 19.5

12.2 FLIGHT CONTROL SYSTEMS (ATA 67)

INTRODUCTION

There are three major controls in a helicopter used by the pilot during flight: the collective pitch control, the cyclic pitch control, and the anti-torque pedals or tail rotor control. Sometimes in addition to these major controls, the pilot must also use the throttle control, which is usually mounted directly to the collective pitch control for controlling engine power. [Figure 2-1]

The control systems described in this chapter are not limited to the single main rotor type helicopter but are used in one form or another in most helicopter configurations. All examples refer to a counterclockwise main rotor blade rotation, such as viewed from above. If flying a helicopter with a clockwise rotation, left and right references must be reversed, particularly in the areas of rotor blade pitch change, anti-torque pedal movement, and tail rotor thrust.

CYCLIC CONTROL

The cyclic pitch control is usually projected upward from the cockpit floor, between the pilot's legs or in some models between the two pilot's seats. [Figure 2-2]

The purpose of the cyclic-pitch control is to cause the tip-path plane of the main rotor to tilt as required to provide for movement of the helicopter in a desired direction: forward, rearward, left, and right.

As discussed in *Submodule 1*, the total lift force is always perpendicular to the tip-path plane of the main rotor. The main rotor tilts in the direction called for by the control, and the helicopter moves as directed. When the control stick is in neutral, the helicopter remains stationary in the air (hover). If wind is

present, the helicopter drifts in the direction of wind unless sufficient cyclic movement (rotor thrust) is applied to cancel the effect of the wind.

The rotor disk is also subject to the effect of gyroscopic precession as described in *Submodule 1*. To counteract this effect, the mechanical linkages for the cyclic control rods are rigged in such a way that they decrease the pitch angle of each rotor blade at approximately 90° in the point of the rotor's rotation as it reaches the direction of cyclic displacement and increases the pitch angle of the rotor blade at approximately 90° after it passes the direction of displacement. An increase in pitch angle increases the angle of attack; a decrease in pitch angle decreases the angle of attack. When the cyclic is moved forward, the angle of attack decreases as the rotor blade passes the right side of the helicopter and increases on the left side (on the retreating blade). This results in a maximum downward deflection of the rotor blade in front

Figure 2-1. Helicopter controls on the flight deck.

of the helicopter and a maximum upward deflection behind it, causing the rotor disk to tilt forward.

COLLECTIVE CONTROL

The collective pitch control (or simply "collective" or "thrust lever") is located on the left side of the pilot's seat and is operated with the left hand. The collective is used to make changes to the pitch angle of the main rotor blades and acts simultaneously, or "collectively". Through a series of mechanical linkages, as the collective lever is raised, there is a simultaneous and equal increase in pitch angle of all main rotor blades. As it is lowered, there is an equal decrease in pitch angle. The amount of movement in the collective lever determines the

Figure 2-2. Location of cyclic pitch control.

amount of blade pitch change. [Figure 2-3] An adjustable friction control helps prevent inadvertent collective lever movement.

With a change in pitch angle comes a change in the load on each blade, which affects the speed or Revolutions Per Minute (RPM) of the main rotor. As the pitch angle increases, the blade takes a bigger bite of air that increases the load on the blade, and so the rotor RPM decreases. Decreasing pitch angle decreases the load on the blade, and RPM increases. To maintain a constant rotor RPM, which is essential in helicopter operations, a proportionate change in power is required to compensate for the change in load on the blades. This is accomplished with the throttle control or governor, which automatically adjusts engine power according to the position of the collective.

In Figure 2-3A the collective pitch control is lowered, which causes the blade angle and the amount of lift created to decrease along with applying a proportional decrease in engine power. [Figure 2-3B]. In Figure 2-3C the collective is raised to increase the lift created by the blades Figure 2-3D, and the governor or throttle increases the engine power to maintain the rotor RPM.

THROTTLE CONTROL

The function of the throttle and the governor is to regulate engine RPM by increasing or decreasing fuel flow towards the engine when the collective is raised or lowered. If the governor is an automatic system, to maintain RPM the throttle must be moved manually with the twist grip. The throttle control is much like a motorcycle throttle and works the same way. Twisting the throttle to the left increases RPM. Twisting to the right decreases RPM. As with any aircraft control, large adjustments of either collective pitch or throttle should be avoided. All corrections should be made using smooth pressure.

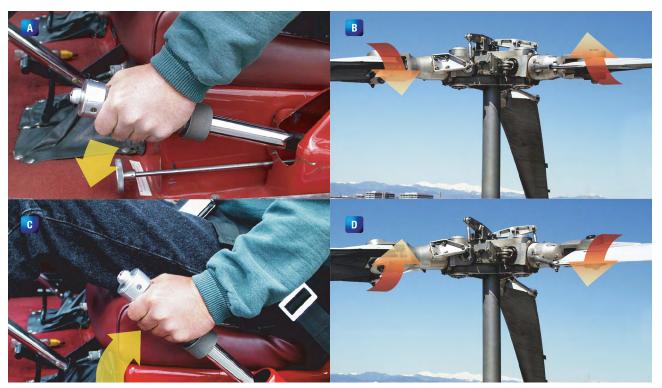


Figure 2-3. Movement of collective pitch control-throttle and effect on rotor blades.

CORRELATOR

A correlator is an automated mechanical connection between the collective lever and the engine throttle. When the collective lever is raised, power is automatically increased; when lowered, power is decreased. This system maintains RPM close to the desired value, but still requires adjustment of the throttle for fine tuning.

GOVERNOR

A governor is a sensing device that monitors rotor and engine RPM and makes the necessary adjustments to keep rotor RPM constant. In normal operations, once the rotor RPM is set, the governor keeps it constant and there is no need to make any throttle adjustments. Governors are common on all turbine powered helicopters as they are a function of the fuel control system and are used on some piston engine helicopters.

SWASHPLATE

When a pilot moves the collective or cyclic controls on the flight deck, a signal is sent to the main rotor blades to cause them to change their angles. From the flight deck, the signal can originate as the movement of cables and pulleys, push/pull tubes, or even an electronic signal. The command for a change in blade or rotor angle must start from the non rotating fuselage and find its way to the main rotor blades which are rotating. The device which permits these changes is called a swashplate. [Figure 2-4]

The swashplate is made of two circular plates, one on the bottom that is attached to the frame of the helicopter and does not rotate, and one on the top that is attached to the rotating blade assembly. The plates are separated by a set of bearings allowing the top plate to rotate over the bottom plate while physically being in contact with it, so forces can be transferred. **Figure 2-5** shows a simplified swash plate as part of a main rotor system.

A swashplate assembly consists of the parts shown in Figure 2-6. The lower swashplate is locked in rotation by the fixed scissor. This scissor is connected between the top of the main gearbox and the lower swashplate. This plate is actuated by the control rods of the cyclic and collective linkages and has two possibilities of movement.

As each blade rotates through the tip spath plane, the variation of the blade pitch is accomplished through the tilting of a fixed swashplate and its mechanical linkages (pitch angle rods).

THE CYCLIC MOVEMENT AND THE SWASHPLATE

When the pilot moves the cyclic pitch control, this command sends the lower swashplate around a ball joint and tilts the upper swashplate which remains in parallel with the rotor due to its two bearings. The rotary swashplate now spins in an inclined circle. This means that the pitch change rods are constantly undergoing up and down movements. As they are attached to the rotor they will constantly change the blade pitches between high to low values with each revolution, thus creating high lift at one point on the rotating disc and low at 180° from that point. [Figure 2-7]

In other words, the swashplate will tilt the main rotor in the requested direction and therefore the helicopter will also move in this desired direction. To define the plane represented by the

Figure 2-4. Light helicopter swashplate.

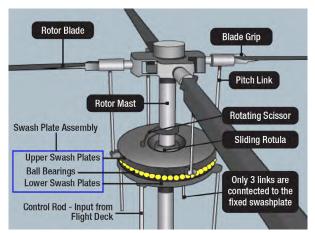


Figure 2-5. Simplified figure of a helicopter swashplate.

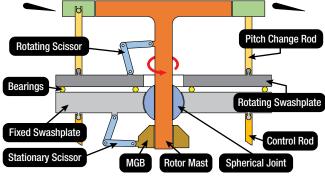


Figure 2-6. Swashplate component.

swashplate, it is necessary to connect three points which define the different tilting axis. [Figure 2-8]

THE COLLECTIVE MOVEMENT AND THE SWASHPLATE

The lower swashplate is connected to a ball joint that slides up and down along the rotor mast. When the pilot pulls the collective control, a command is sent to the lower swashplate by three connecting rods as shown in Figure 2-5 as "input from flight deck".

These three rods push the lower swash plate in parallel upwards, which also pushes the upper swashplate and ball joint as one unit. The upper swash plate, through these links, applies force to the rotor blades and so changing the angle of attack of all the blades in the same direction regardless of the inclination of the swashplate. [Figure 2-9]

It is possible to operate the cyclic stick and the collective stick simultaneously. In that case all the bellcranks move, transmitting a specific movement to the swashplate which acts to control the angle of attack of each blade as the pilot wishes.

YAW CONTROL: ANTI-TORQUE CONTROL, TAIL ROTOR, BLEED AIR

ANTI-TORQUE CONTROL, TAIL ROTOR

Yaw for an aircraft (helicopter or airplane) is a movement that takes place around the vertical axis. The three axes of rotation for a helicopter are shown in **Figure 2-10**. For a helicopter with a single main rotor yaw control is accomplished by the tail rotor (anti-torque rotor).

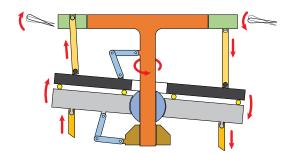


Figure 2-7. Cyclic movement.

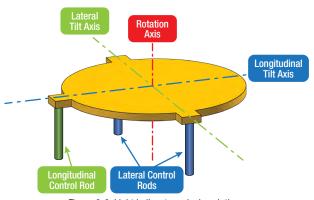


Figure 2-8. Light helicopter axis description.

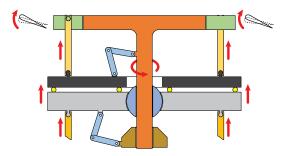


Figure 2-9. Collective movement.

One method to counteract torque is to place a small propeller at the end of the tail boom. Its purpose is to create thrust that acts in the opposite direction of the helicopter's tendency to rotate. The tail rotor force, in newtons, multiplied by the distance from the tail rotor to the main rotor, in meters, creates a torque in newton meters that counteracts the main rotor torque. The main difference is that there is no cyclic control as it is not necessary to modify the direction of the lift but simply to increase or decrease thrust as a collective command. [Figure 2-11]

THE TAIL COLLECTIVE HINGE

The tail collective hinge system is the same, regardless of the number of blades on the tail. To modify the thrust of the tail rotor, it is necessary to be able to change the angle of attack of all the blades at the same time. To create the collective movement

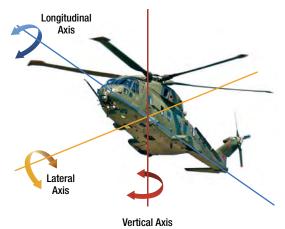


Figure 2-10. Three axes of rotation for a helicopter.

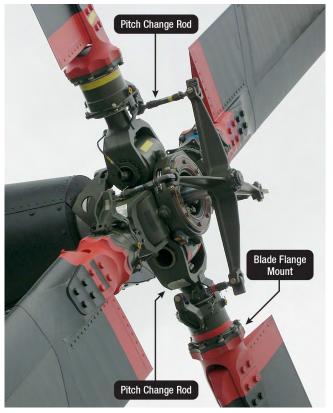


Figure 2-11. Tail rotor description.

on the tail blades, a servo control acts on a platter called a spider. When the spider is in motion, the pitch change rods connected between it and the blades force the latter to move around its feathering hinge.

When the main rotor is turning counterclockwise (viewed from the top), its torque will try to rotate the fuselage clockwise. This makes the nose of the helicopter yaw to the right. When the anti-torque rotor is producing the correct amount of thrust to exactly counteract the torque of the main rotor, the nose of the helicopter will remain steady in the same direction. Making the helicopter yaw to the right is accomplished by pushing on the right anti-torque pedal. [Figure 2-12] This action reduces the thrust of the tail rotor (by reducing the blade angle) to less than what is needed to counteract the torque and the helicopter yaws to the right. When the pilot pushes the left anti-torque pedal, increases the blade angle of the tail rotor, the nose of the helicopter will yaw to the left. It is important to understand that the tail rotor does not control the direction in which the helicopter is flying. It only controls the direction in which the fuselage is heading. The direction of flight is controlled by the cyclic pitch system, as previously described.

THE TAIL FLAPPING HINGE

When a helicopter is in motion, the translation speed is added or subtracted from the rotation speed of the blades depending on whether it is an advancing or a retreating blade. This problem is the same on the tail rotor. To solve it, a flapping hinge is added. On the tail rotor, the blades are lighter than the main rotor and the movement is easy to control. When the blade rotates in the advancing zone, the pitch is automatically changed by the change rod which reduces the angle of attack. With this reduction in lift, the reaction of the blade is to return to the average flying plan. [Figure 2-13]

When the blade retreats, it tends to move closer to the tail structure. To avoid contact, the pitch change rod increases the pitch. The reaction of the blade with the increased pitch is to move away from the structure. [Figure 2-14]

Figure 2-12. Movement of right pedal.

THE TAIL AND PEDAL CONNECTION

Because the tail rotor is too far from the pedals to connect with connecting rods, the usual solution is to route cables through the tail structure. [Figure 2-15] At the end of the tail beam, the movement of the cables controls the servo-control of the tail. When the servo-control extends or retracts, it changes the

position of the spider and so changes the blade's angle of attack thus adjusting thrust.

DIFFERENT SOLUTIONS

During translational flight, the tail rotor uses 20% of the power supplied by the motor. The remaining 80% is given to the main rotor. Different solutions are used to reduce the power consumption of the tail and restore maximum torque to the main rotor.

Figure 2-13. Advancing zone flapping movement.

Figure 2-14. Retreating zone flapping movement.

