

AVIATION MAINTENANCE TECHNICIAN CERTIFICATION SERIES

MAINTENANCE PRACTICES

7

Update notices for this book will be available online at www.actechbooks.com/revisions.html
If you would like to be notified when changes occur, please join our mailing list at www.actechbooks.com

VERSION	EFFECTIVE DATE	DESCRIPTION OF REVISION(S)
001	2020.03	Module creation and release.
001.1	2021.04	Enhanced Submodule 4; IFR 4000 and 6000 test equipment.
001.2	2021.10	Corrected description of file types (Submodule 7, pages 3.15-3.16).
001.3	2023.04	Inclusion of Measurement Standards for clarification, page iv. Minor appearance and format updates.
002	2024.07	Regulatory update for EASA 2023-989 Compliance.
002.1	2025.01	Page 5.9 - Corrected orientation of Figure 5-10B. Page 5.25 - Corrected y axis identifier for Figure 5-36.

Module was reorganized based upon the EASA 2023-989 subject criteria.

MEASUREMENT STANDARDS

SI Units

The measurements used in this book are presented with the International System of Units (SI) standards in all cases except when otherwise specified by ICAO (for example, altitude expressed in feet or performance numbers as specified by a manufacturer). The chart below can be used should your studies call for conversions into imperial numbers.

Number Groups

This book uses the International Civil Aviation Organization (ICAO) standard of writing numbers. This method separates groups of 3 digits with a space, versus the European method by periods and the American method by commas.

For example, the number one million is expressed as:

ICAO Standard 1 000 000 European Standard 1.000.000 American Standard 1,000,000

Prefixes

The prefixes used in the table below form names of the decimal equivalents in SI units.

PREFIX AND SYMBOLS CHART

11121 1874 112 011 112 02 01 17 11 11			
MULTIPLICATION FACTORS	PREFIX	SYMB0L	
1 000 000 000 000 000 000 = 1018	exa	Е	
$1\ 000\ 000\ 000\ 000\ 000\ = 10^{15}$	peta	P	
1 000 000 000 000 = 1012	tera	Т	
1 000 000 000 = 109	giga	G	
1 000 000 = 106	mega	M	
$1\ 000 = 10^3$	kilo	k	
$100 = 10^2$	hecto	h	
10 = 101	deca	da	
$0.1 = 10^{-1}$	deci	d	
$0.01 = 10^{-2}$	centi	с	
0.001 = 10 ⁻³	milli	m	
$0.000\ 001 = 10^{-6}$	micro	μ	
$0.000\ 000\ 001 = 10^{-9}$	nano	n	
$0.000\ 000\ 000\ 001 = 10^{-12}$	pico	p	
0.000 000 000 000 001 = 10 ⁻¹⁵	femto	f	
$0.000\ 000\ 000\ 000\ 000\ 001 = 10^{-18}$	atto	a	

COMMON CONVERSIONS CHART

IMPERIAL	TO	SI (METRIC)
Distance		
1 Inch	is equal to	2.54 Centimeters
1 Foot	is equal to	0.304 Meters
1 (Statute) Mile	is equal to	1.609 Kilometers
Weight		
1 Pound	is equal to	0.454 Kilograms
Volume		
1 Quart	is equal to	0.946 Liters
1 Gallon	is equal to	3.785 Liters
Temperature		
°0 Fahrenheit	is equal to	-17.778 Celsius (°C)
°0 Fahrenheit	is equal to	255.37 Kelvin (K)
Area		
1 Square Inch	is equal to	6.451 Square Centimeters
1 Square Foot	is equal to	0.093 Square Meters
1 Square Mile	is equal to	2.59 Square Kilometers
Velocity		
1 Foot Per Second	is equal to	0.304 Meters Per Second
1 Mile Per Hour	is equal to	1.609 Kilometers Per Hour
1 Knot	is equal to	1.852 Kilometers Per Hour

SI (METRIC)	то	IMPERIAL		
Distance				
1 Centimeter	is equal to	0.394 Inches		
1 Meter	is equal to	3.28 Feet		
1 Kilometer	is equal to	0.621 Miles		
Weight				
1 Kilogram	is equal to	2.204 Pounds		
Volume				
1 Liter	is equal to	1.057 Quarts		
1 Liter	is equal to	0.264 Gallons		
Temperature				
°0 Celsius (°C)	is equal to	33.8° Fahrenheit		
°0 Kelvin (K)	is equal to	-459.67 Fahrenheit		
Area				
1 Square Centimeter	is equal to	0.155 Square Inches		
1 Square Meter	is equal to	10.764 Square Feet		
1 Square Kilometer	is equal to	0.386 Square Miles		
Velocity				
1 Meter Per Second	is equal to	3.281 Feet Per Second		
1 Kilometer Per Hour	is equal to	0.621 Miles Per Hour		
1 Kilometer Per Hour	is equal to	0.540 Knots		

Pressure

pounds per square inch (psi)	kiloPascals (kPa)	6.897	
pounds per square inch (psi)	Pascals (Pa)	6.894	

BASIC KNOWLEDGE REQUIREMENTS

Qualification on basic subjects for each aircraft maintenance license category or subcategory is accomplished in accordance with the following matrix. Where applicable, subjects are indicated by an "X" in the column below the license heading.

	EASA LICENSE CATEGORY CHART MODULE NUMBER AND TITLE	A1 Airplane Turbine	B1.1 Airplane Turbine	B1.2 Airplane Piston	B1.3 Helicopter Turbine	B1.4 Helicopter Piston	B2 Avionics
1	Mathematics	Х	Х	Х	Х	Х	Х
2	Physics	Х	Х	Х	Х	Х	Х
3	Electrical Fundamentals	Х	Х	Х	Х	Х	Х
4	Electronic Fundamentals		Х	Х	Х	Х	Х
5	Digital Techniques, Electronic Instrument Systems	Х	Х	Х	Х	Х	Х
6	Materials and Hardware	Х	Х	Х	Х	Х	Х
7	Maintenance Practices	Х	Х	Х	Х	Х	Х
8	Basic Aerodynamics	Х	Х	Х	Х	Х	Х
9	Human Factors	Х	Х	Х	Х	Х	Х
10	Aviation Legislation	Х	Х	Х	Х	Х	Х
11	Aeroplane Aerodynamics, Structures and Systems	Х	Х				
12	Rotorcraft Aerodynamics, Structures and Systems				Х	Х	
13	Aircraft Aerodynamics, Structures and Systems						Х
14	Propulsion						Х
15	Gas Turbine Engine	Х	Х		Х		
16	Piston Engine			Х		Х	
17	Propeller	Х	Х	Х			

Basic knowledge requirments as outlined in Part-66, Appendix I

The knowledge level indicators are defined on 3 levels as follows:

Level 1

A familiarization with the principal elements of the subject.

Objectives:

- a. The applicant should be familiar with the basic elements of the subject.
- b. The applicant should be able to give a simple description of the whole subject, using common words and examples.
- c. The applicant should be able to use typical terms.

Level 2

A general knowledge of the theoretical and practical aspects of the subject and an ability to apply that knowledge. Objectives:

- a. The applicant should be able to understand the theoretical fundamentals of the subject.
- b. The applicant should be able to give a general description of the subject using, as appropriate, typical examples.
- $c. \ \, The applicant should be able to use mathematical formula in conjunction with physical laws describing the subject.$
- d. The applicant should be able to read and understand sketches, drawings and schematics describing the subject.
- e. The applicant should be able to apply his knowledge in a practical manner using detailed procedures.

Level 3

A detailed knowledge of the theoretical and practical aspects of the subject and a capacity to combine and apply the separate elements of knowledge in a logical and comprehensive manner.

- a. The applicant should know the theory of the subject and interrelationships with other subjects.
- b. The applicant should be able to give a detailed description of the subject using theoretical fundamentals and specific examples.
- c. The applicant should understand and be able to use mathematical formula related to the subject.
- d. The applicant should be able to read, understand and prepare sketches, simple drawings and schematics describing the subject.
- e. The applicant should be able to apply his knowledge in a practical manner using manufacturer's instructions.
- f. The applicant should be able to interpret results from various sources and measurements and apply corrective action where appropriate.

PART 66 BASIC KNOWLEDGE REQUIREMENTS

۱۷	MODULE KNOWLEDGE DESCRIPTIONS	LEVE
		B2
7.1	Safety Precautions – Aircraft and Workshop Aspects of safe working practices including precautions to be taken when working with electricity, gases (especially oxygen), oils, and chemicals. Fuel tank safety, fuel tank entry procedures and precautions. Awareness and precautions regarding aircraft equipped with ballistic recovers systems. Also, instructions in the remedial action to be taken in the event of a fire or another accident with one or more of these hazards including knowledge of fire extinguishing agents.	3
7.2	Workshop Practices Care of tools / drills and reamers, control of tools, use of workshop materials; Dimensions, allowances and tolerances, workmanship standards; Calibration of tools and equipment, calibration standards.	3
7.3	Tools Common hand-tool types; Common power-tool types; Operation and use of precision-measuring tools; Lubrication equipment and methods; Operation, function, and use of electrical general test equipment.	3
7.4	Submodule reserved for future use.	_
7.5	Engineering Drawings, Diagrams, and Standards Drawing types and diagrams, their symbols, dimensions, tolerances and projections; Identification of title block information; Microfilm, microfiche, and computerised presentations; Specification 100 of the Air Transport Association (ATA) of America; Aeronautical and other applicable standards including ISO, AN, MS, NAS and MIL; Wiring diagrams and schematic diagrams.	2
7.6	Fits and Clearances Drill sizes for bolt holes, classes of fits; Common system for fits and clearances; Schedule of fits and clearances for aircraft and engines; Limits for bow, twist and wear; Standard methods for checking shafts, bearings, and other parts.	1
7.7	Electrical Wiring Interconnection System (EWIS) Continuity, insulation and bonding techniques and testing; Use of crimp tools: hand and hydraulic operated; Testing of crimp joints; Connector pin removal and insertion; Coaxial cables: testing and installation precautions; Identification of wire types, their inspection criteria and damage tolerance; Wiring protection techniques: cable looming and loom support, cable clamps, protective sleeving techniques including heat shrink wrapping, shielding; High-Intensity Radiated Fields (HIRF) and protection principles; Soldering of electrical wires, EWIS installations, inspection, repair, maintenance, and cleanliness standards.	3
7.8	Riveting Riveted joints, rivet spacing and pitch; Tools used for riveting and dimpling; Inspection of riveted joints.	-
7.9	Pipes and Hoses Bending and belling/flaring aircraft pipes; Inspection and testing of aircraft pipes and hoses; Installation and clamping of pipes.	-
7.10	Springs Inspection and testing of springs.	_
7.11	Bearings Testing, cleaning and inspection of bearings; Lubrication requirements for bearings; Defects in bearings and their causes.	-
7.12	Transmissions Inspection of gears, backlash; Inspection of belts and pulleys, chains and sprockets; Inspection of screw jacks, lever devices, push–pull rod systems.	-

PART 66 BASIC KNOWLEDGE REQUIREMENTS

	ODULE KNOWLEDGE DESCRIPTIONS	LEVE
7.13	Control Cables Swaging of end fittings; Inspection and testing of control cables; Bowden cables; aircraft flexible control systems.	- B2
7.14	Material Handling	
7.14.1	Sheet Metal Marking out and calculation of bend allowance; Sheet metal working, including bending and forming; Inspection of sheet metal work.	-
7.14.2	Composite and Non-metallic Bonding practices; Environmental conditions; Inspection methods.	-
7.14.3	Additive Manufacturing Common additive manufacturing techniques and their influence on the mechanical properties of the finished part; Inspection of additive manufactured parts and common production failures.	1
7.15	Submodule reserved for future use.	-
7.16	Aircraft Weight and Balance (a) Calculation of centre-of-gravity / balance limits: use of relevant documents. (b) Preparation of aircraft for weighing; Aircraft weighing.	2 -
7.17	Aircraft Handling and Storage Aircraft taxiing/towing and associated safety precautions; Aircraft jacking, chocking, securing and associated safety precautions; Aircraft storage methods; Refuelling/defuelling procedures; De-icing/anti-icing procedures; Electrical, hydraulic, and pneumatic ground supplies; Effects of environmental conditions on aircraft handling and operation.	2
7.18	Disassembly, Inspection, Repair, and Assembly Techniques (a) Types of defects and visual inspection techniques; Corrosion removal, assessment and reprotection; (b) General repair methods, structural repair manual; Ageing, fatigue, and corrosion control programmes; (c) Non-destructive inspection techniques including penetrant, radiographic, eddy current, magnetic particle, ultrasonic and borescope inspections; including practical training in colour contrast penetrant inspection; (d) Disassembly and reassembly techniques; (e) Troubleshooting techniques.	3 - 1 2 2
7.19	Abnormal Events (a) Inspections following lightning strikes and HIRF penetration; (b) Inspections following abnormal events such as heavy landings and flight through turbulence.	2 -
7.20	Maintenance Procedures Maintenance planning; Modification procedures; Stores procedures; Certification/release procedures; Interface with aircraft operation; Maintenance Inspection / Quality Control / Quality Assurance; Additional maintenance procedures; Control of life-limited components.	2
7.21	Documentation and Communication Documentation: elements and criteria for writing work reports, troubleshooting reports, and shift handover instructions. Communication: clear, comprehensive, and concise.	2

MAINTENANCE PRACTICES	7.2 WORKSHOP PRACTICES	2.1
Revision Log	Care and Control of Tools; Use of Workshop Materials	2.1
Measurement Standards iv	Care of Tools	2.1
Basic Knowledge Requirementsv	Benches	2.1
Part 66 Basic Knowledge Requirements vi	Vices	2.1
Table of Contentsix	Drilling Machines	2.1
	Grinder	2.1
7.1 SAFETY PRECAUTIONS — AIRCRAFT AND WORKSHOP 1.1	Motor Drives	2.2
Safety Around Electricity	Measuring Instruments	2.2
Fire Safety Around Electricity	Drills and Reamers	2.2
Safety Around Compressed Gases	Control of Tools	2.2
Oxygen Safety Considerations	Tool Control Procedures	2.2
Safety Around Hazardous Materials1.2	Workshop Materials	2.3
Safety Around Machine Tools	Dimensions, Allowances and Tolerances;	
Fuel Tank Entry Procedures and Precautions1.4	Workmanship Standards	2.3
Fuel Tank Entry Procedures and Precautions1.4	Dimensions, Allowances, and Tolerances	
Chemical Hazards	Standards of Workmanship	
Physical Hazards	Tool Calibration	
Preparation for Entry	Submodule 2 Practice Questions	
Ensuring Adequate Ventilation 1.5	Submodule 2 Practice Answers	
Ventilation Techniques		
Monitoring Air in Fuel Tanks	7.3 TOOLS	3.1
Conditions Required for Entry 1.5	Common Hand Tools	3.1
Communication	Screwdrivers	
Respiratory Protection	Pliers and Plier-Type Cutting Tools	
Electrically Powered Equipment	Clamps and Vises	
Airplane Damage Considerations	C-Clamps	
Ballistic Recovery Systems	Vises	
Awareness and Precautions Regarding Ballistic	Hammers and Mallets	
Recovery Systems	Punches	
Basic Understanding	Wrenches	
Primary Components	Open-End Wrenches	
Safety Around Ballistic Recovery Systems 1.6	Box-End Wrenches	
Inspection and Maintenance	Socket Wrenches	
Installation and Removal	Adjustable Wrenches	
Fire Safety	Special Wrenches	
Requirements for a Fire to Occur	Strap Wrenches	
Classification of Fires. 1.7	Impact Wrenches	
Ordinary Combustibles	Torque Wrenches	
Flammable Liquid and Gas	Torque Tables	
Electrical	Cutting Tools	
Metal	Hand Snips	
Cooking Oils	Metal Shears	
European Standards	Hacksaws	
Fire Extinguishers	Chisels	
Identifying Fire Extinguishers	Files	
Inspection of Fire Extinguishers	File Types and Use	
Using Fire Extinguishers	Commonly Used Files	
Flight Line Safety	Care of Files.	
Hearing Protection	Burring Tools	
Foreign Object Damage (FOD)	Reamers	
Safety Around Airplanes	Taps and Dies	
Safety Around Helicopters	Common Power Tools	
Submodule 1 Practice Questions	Saws	
Submodule 1 Practice Questions 1.13 Submodule 1 Practice Answers 1.14	Circular Cutting Saws	
outmount 1 1 factice / fillowers	Kett Saw	
	11Ctt Oav	. 5.10

Pneumatic Circular-Cutting Saw	Twist Drill Bits	3.29
Reciprocating Saw	Cobalt Alloy Drill Bits	3.29
Die Grinders	Step Drill Bits	3.29
Cut-Off Wheels	Twist Drill Construction and Sizes	3.29
Nibblers	Drill Bit Sizes	3.30
Table Top, and Bench Tools	Hole Drilling Techniques	3.31
Notchers	Drilling Large Holes	3.34
Band Saws	Drill Lubrication	3.34
Metal Shears	Drill Accessories	3.34
Throatless Shears	Drill Stops	3.34
Scroll Shears	Drill Bushings	3.34
Rotary Punch Press	Drill Bushing Holder	3.34
Foot Operated Shears	Presicion Measuring Tools	3.35
Squaring Shears	Rules	3.35
Sanders	Combination Sets	3.35
Disk Sander	Scriber	3.35
Belt Sander	Dividers and Pencil Compasses	3.35
Grinders	Calipers	
Grinding Wheels	Micrometer Calipers	
Bending Tools	Micrometer Parts	
Bar Folding Machine	Reading a Micrometer	
Cornice Brake	Vernier Scale	
Box and Pan Brake	Using a Micrometer	
Press Brake	Dial Indicator	
Slip Roll Former	Slide Calipers	
Rotary Machine	Lubrication Equipment	
Shrinking, Stretching Tools and Procedures	Electrical Test Equipment	
Shrinking Tools	DC Measuring Equipment	
Stretching Tools	D'arsonval Meter Movement	
Forming Tools and Procedures	Current Sensitivity and Resistance	
Stretch Forming	Dampening	
Drop Hammer	Electrical Damping	
Hydropress Forming	Mechanical Damping	
Spin Forming	Multirange Ammeter	
Forming with an English Wheel	Precautions	
Piccolo Former	Voltmeters	
Manual Sheet Metal Shrinker	Voltmeter Sensitivity	
Hand-Operated Shrinker/Stretcher	MultiRange Voltmeters	
Forming Blocks	Voltmeter Circuit Connections	
Dollies and Stakes	Influence of the Voltmeter in the Circuit	
Hardwood Form Blocks. 3.26	Ohmmeter	
V-Blocks	Zero Adjustment	
Shrinking Blocks 3.26	Ohmmeter Scale	
Sandbags	Multirange Ohmmeter	
Hammers and Mallets	Megger (Megohmmeter)	
Drilling	AC Measuring Equipment	
Portable Power Drills. 3.27	Electrodynamometer Meter Movement	
Pneumatic Drill Motors. 3.27	Moving Iron Vane Meter	
	Inclined Coil Iron Vane Meter	
Angled Drill Motors	Varmeters	
Drill Extension and Adapters	Wattmeter	
Extension Drill Bits		
	Oscilloscope	
Angle Adapters 3.28 Spake Attachment 3.28	Vertical Deflection	
Snake Attachment 3.28 Drill Proce 3.28		
Drill Press	Tracing a Sine Wave	
Types of Drill Bits	Control Features on an Oscilloscope	s.49

Flat Panel Color Displays for Oscilloscopes	Applied Geometry	5.7
Digital Multimeters3.50	Orthographic Projection	5.7
Basic Circuit Analysis and Troubleshooting	Detail View	5.9
Voltage Measurement	Pictorial Drawings	
Current Measurement	Perspective Drawings	
Checking Resistance	Isometric Drawings	
Continuity Checks	Oblique Drawings	
Capacitance Measurement	Exploded View Drawings	
Inductance Measurement	Lines and Their Meanings	. 5.11
Troubleshooting the Open Faults in Series Circuits 3.53	Centerlines	
Tracing Opens with the Voltmeter	Dimension Lines	
Tracing Opens with the Ohmmeter	Extension Lines	
Troubleshooting the Shorting Faults in Series Circuits 3.54	Sectioning Lines	
Tracing Shorts with the Ohmmeter	Phantom Lines	
Tracing Shorts with the Voltmeter	Break Lines	
Troubleshooting the Open Faults in Parallel Circuits 3.55	Leader Lines	
Tracing an Open with an Ammeter	Hidden Lines	
Tracing an Open with an Ohmmeter	Outline or Visible Lines	
Troubleshooting the Shorting Faults in Parallel Circuits 3.56	Stitch Lines	
Troubleshooting the Shorting Faults in	Cutting Plane and Viewing Plane Lines	
Series-Parallel Circuits	Drawing Symbols.	
Tracing Opens with the Voltmeter	Material Symbols	
Submodule 3 Practice Questions	Shape Symbols	
Submodule 3 Practice Answers	Electrical Symbols	
Submodule 3 Practice Questions	Reading and Interpreting Drawings	
Submodule 3 Practice Answers	Drawing Sketches	
7.4.DECEDUED 4.4	Sketching Techniques	
7.4 RESERVED	Basic Shapes	
This submodule is reserved by EASA for future use 4.1	Repair Sketches	
7 E ENCINEEDING DRAWINGS DIACRAMS AND STANDARDS 5.1	Care of Drafting Tools	
7.5 ENGINEERING DRAWINGS, DIAGRAMS, AND STANDARDS5.1	Title Blocks	
Purpose and Function of Aircraft Drawings	Drawing or Print Numbers	
Projections	Computerized Presentations	
Drawing Types	Microfilm and Microfiche	
Detail Drawings. 5.1	Digital Images	
Assembly Drawings	Specification 100 of the Air Transport Association (ATA)	
Installation Drawings	ATA 100 and iSpec 2200	
Sectional View Drawings	Aeronautical Standards	
Full Section	ISO	
Half Section. 5.2	AN (Army/Navy)	
Revolved Section	MS (Military Standard)	
Removed Section	NAS (National Aerospace Standard)	
Universal Numbering System	BS (British Standards)	
Drawing Standards	Wiring and Schematic Diagrams	
Bill of Material. 5.2	Diagrams	
Other Drawing Data	Installation Diagrams	
Revision Block	Schematic Diagrams	
Notes	Block Diagrams	
Zone Numbers	Wiring Diagrams (Schematics)	
Station Numbers and Location Identification on Aircraft 5.7	Flowcharts	
Allowances and Tolerances	Troubleshooting Flowchart	
Finish Marks	Logic Flowchart	
Scale	Graphs and Charts	
Application	Reading and Interpreting Graphs and Charts	
Methods of Illustration 5.7	Namagrama	5 21

Submodule 5 Practice Questions	Adjacent Locations
Submodule 5 Practice Answers	Sealing
	Drainage 7.8
7.6 FITS AND CLEARANCES6.1	Wire Support
Drill Sizes for Bolt Holes; Classes of Fits 6.1	Coaxial Cables; Testing and Installation 7.8
Accuracy of Drilled Holes 6.1	Testing Coaxial Cable 7.10
Classes of Fit 6.1	Identification of Wire Types, Inspection and
Common System of Fits and Clearances	Damage Tolerance
British Standards BS 4500 System 6.2	Identification of Wire Types 7.10
BS 4500 Definitions:	Placement of Identification Markings 7.10
BS 4500 Basic Hole System	Types of Wire Markings 7.10
BS 4500 Basic Shaft System	Wire Inspection
Basic Hole Method - Metric	Wire Protection: Cable Looms and Support, Clamps,
Dimensions, Allowances and Tolerances	Heat Shrink Wrap and Shielding 7.11
Dimensions	Wire Bundles and Routing 7.11
Allowances	Slack in Wire Bundles 7.12
Tolerances	Twisting Wires
Unilateral and Bilateral Tolerances 6.4	Spliced Connections In Wire Bundles 7.12
Schedule of Fits and Clearances	Lacing and Tying Wire Bundles 7.13
Limits for Bow, Twist and Wear 6.4	Bend Radii
Limits for Bow	Wire Protection
Limits for Twist	Protection Against Chafing 7.14
Limits for Wear	Protection Against High Temperature 7.14
Limits for Ovality	Protection Against Solvents and Fluids 7.14
Standard Methods for Checking Shafts, Bearings, and	Protection of Wires in Wheel Well Areas
Other Parts	Clamp Installation
Checking for Bow	Wire and Cable Clamp Inspection 7.17
Clearance Measured By Feeler Gauges 6.5	Movable Controls Wiring Precautions 7.17
Checking for Twist	Conduit
Piston Engine Connecting Rod Twist	Rigid Conduit
Checking for Ovality	Flexible Conduit
Submodule 6 Practice Questions	Heat Shrink Wrapping 7.18
Submodule 6 Practice Answers 6.8	Wire Shielding
	Junction Boxes
7.7 ELECTRICAL WIRING INTERCONNECT SYSTEM (EWIS) 7.1	High-Intensity Radiated Fields (HIRF) Protection Principles 7.20
Continuity, Insulation, Bonding, and Testing 7.1	HIRF Protection
Continuity	Soldering Electrical Wires 7.21
Insulation	Soldering and Spacing of Wires 7.21
Bonding and Grounding	Soldering Wires to a Circuit Board
Grounding	Soldering Wires to a Connector
Bonding	EWIS Installation, Repair, Maintenance and Cleanliness 7.22
Testing of Bonds and Grounds	EWIS Standards
Bonding Jumper Installation 7.3	EWIS Inspection, Repair and Maintenance
Stripping and Crimping Tools; Hand and Hydraulic 7.4	EWIS Cleaning Requirements and Methods
Stripping Wire	Submodule 7 Practice Questions
Terminal Strips	Submodule 7 Practice Answers
Terminal Lugs	
Copper Wire Terminals	7.8 RIVETS8.1
Aluminum Wire Terminals	This submodule is not required for B2 Licensing 8.1
Pre-Insulated Splices	1
Emergency Splicing Repairs	7.9 PIPES AND HOSES9.1
Crimping Tools	This submodule is not required for B2 Licensing9.1
Inspection and Testing of Crimped Joints 7.7	1
Connector Pin Removal and Insertion	7.10 SPRINGS10.1
Insertion	This submodule is not required for B2 Licensing 10.1
D 1	1

7.11 BEARINGS11.1	Weight and Balance Data	16.
This submodule is not required for B2 Licensing 11.1	Center of Gravity Range	16.
	Empty Weight Center of Gravity Range	
7.12 TRANSMISSIONS12.1	Operating Center of Gravity Range	
This submodule is not required for B2 Licensing 12.1	Example Weight and Balance Computations	
7.13 CONTROL CABLES13.1	Datum Forward of the Airplane – Nosewheel	. 10.
This submodule is not required for B2 Licensing	Landing Gear	16 10
This submodule is not required for B2 Electisting	Datum Aft of the Main Wheels – Nosewheel	. 10.1
7.14 MATERIAL HANDLING14.1	Landing Gear	. 16.10
7.14.3 Additive Manufacturing	Location of Datum	. 16.10
Common Additive Manufacturing Techniques 14.1	Datum Forward of the Main Wheels - Tail Wheel	
Additive Manufacturing Techniques	Landing Gear	. 16.10
Methods of Additive Manufacturing	Datum Aft of the Main Wheels - Tail Wheel	
Vat Photopolymerization14.1	Landing Gear	. 16.10
Material Jetting	Loading an Airplane for Flight	. 16.1
Binder Jetting14.2	Example Loading of an Airplane for Flight	. 16.1
Material Extrusion	Adverse-Loaded CG Checks	. 16.12
Ultrasonic Additive Manufacturing	Weight and Balance Extreme Conditions	. 16.12
Powder Bed Fusion	Equipment Change and Aircraft Alteration	. 16.12
Directed Energy Deposition	Example Calculations After an Equipment Change	
Finishing Parts after Printing	The Use of Ballast	. 16.13
Mechanical Properties of Finished Parts	Loading Graphs and CG Envelopes	. 16.1
Inspection of Additive Manufactured Parts and Common	Large Airplanes – Mean Aerodymanic Chord	. 16.10
Production Failures	Helicopter Weight and Balance	. 16.10
Common Production Failures	Weight and Balance Records	. 16.1
Inspection of Additive Manufactured Parts	Submodule 16 Practice Questions	. 16.19
Ultrasonic Testing	Submodule 16 Practice Answers	. 16.20
Radiographic Testing		
CT Scans	7.17 AIRCRAFT HANDLING AND STORAGE	17.
Eddy Current Testing	Aircraft Taxiing/Towing and Associated Safety Precautions.	17.
Submodule 14 Practice Questions	Engine Starting and Operations	17.
Submodule 14 Practice Answers	Reciprocating Engines	
	Hand Cranking Engines	
7.15 RESERVED15.1	Turboprop Engines	
This submodule is reserved by EASA for future use	Turboprop Starting Procedures	
	Turbofan Engines	
7.16 AIRCRAFT WEIGHT AND BALANCE16.1	Starting a Turbofan Engine	
Section A	Auxiliary Power Units (APUs)	
Calculation of Center of Gravity Limit / Balance Limits: Use. 16.1	Unsatisfactory Turbine Engine Starts	
of Relevant Documents	Hot Start	
Aircraft Weight and Balance	False or Hung Starts	
Need and Requirements for Aircraft Weighing 16.1	Engine Will Not Start	
Weight and Balance Terminology 16.2	Extinguishing Engine Fires	
Datum	Taxiing Aircraft	
Arm	Taxi Signals	
Moment	Towing Aircraft	17.
Center of Gravity	Aircraft Jacking, Chocking, Securing, and Associated	
Maximum Weight	Safety Precautions	
Empty Weight	Aircraft Jacking	
Empty Weight Center of Gravity	Tiedown, Chocking and Securing.	
Useful Load	Securing Light Aircraft	
Minimum Fuel	Securing Heavy Aircraft	
Tare Weight	Tiedown Procedures for Seaplanes	
Standard Weights for Aircraft Weight and Balance 16.4	Tiedown Procedures for Skiplanes	
Procedures for Determining Weight and Balance 16.4	Tiedown Procedures for Helicopters	171

Aircraft Storage Methods	Liquid Systems
Hangars	Gaseous Systems
Fire Precautions	Landing Gear
Storage Processes	System Indicators and Gauges
Phase 1 – Preparation	Probes
Phase 2 – Routine Servicing	Handles, Latches, Panels and Doors 18.5
Phase 3 – Repreparation In Storage17.14	Other Inspection Items
Phase 4 – Return To Service	Life Limited Items
Refueling/Defueling Procedures	Corrosion Removal, Assessment and Reprotection 18.6
Fuel Types and Identification	Preventive Maintenance
Contamination Control	Corrosion Removal
Fueling Hazards	Surface Cleaning and Paint Removal
Grounding and Bonding	Corrosion of Ferrous Metals
Fueling Procedures	Mechanical Removal of Iron Rust
Over the Wing Refueling	Chemical Removal of Rust
Pressure Refueling	Chemical Surface Treatment of Steel
Defueling	Removal of Corrosion from Highly Stressed Steel Parts 18.8
De-icing/Anti-Icing Procedures	Corrosion of Aluminum and Aluminum Alloys 18.8
De-icing and Anti-icing of Transport Aircraft	Treatment of Unpainted Aluminum Surfaces
Descring Fluid	Treatment of Anodized Surfaces
Holdover Time (HOT)	Treatment of Intergranular Corrosion In Heat-Treated
Critical Surfaces	Aluminum Alloy Surfaces
Frost Removal	•
Ice and Snow Removal. 17.19	Corrosion of Magnesium Alloys
	Treatment of Wrought Magnesium Sheet and Forgings 18.10
Electrical, Hydraulic and Pneumatic Ground Supplies 17.19	Treatment of Installed Magnesium Castings
Electric Ground Power Units	Corrosion of Titanium and Titanium Alloys
Hydraulic Ground Power Units	
Ground Support Air Units	Contacts Not Involving Magnesium
Ground Air Heating and Air Conditioning	Contacts Involving Magnesium
Oxygen Servicing Equipment	Corrosion Limits
Oxygen Hazards	Processes and Materials used in Corrosion Control
Air/Nitrogen, Oil, and Fluid Servicing	Metal Finishing
Effects of Environmental Conditions on Aircraft Handling and	Surface Preparation
Operation	Chemical Treatments
Submodule 17 Practice Questions	Anodizing
Submodule 17 Practice Answers	Alodizing
THE DIGAGOEMENT INCORPORTION DEPAID AND	Chemical Surface Treatment and Inhibitors
7.18 DISASSEMBLY, INSPECTION, REPAIR, AND	Chromic Acid Inhibitor
ASSEMBLY TECHNIQUES18.1	Sodium Dichromate Solution
Introduction	Protective Paint Finishes
Section A	Section C
Types of Defects and Visual Inspection	Non-destructive Inspection Techniques
Basic Inspection Techniques and Practices	Visual Inspection
Preparation	Surface Cracks
Aircraft Logs	Borescopes
Checklists	Liquid Penetrant
Publications	Interpretation of Penetrant Results
Manufacturers' Service Bulletins and Instructions 18.3	Penetrant Precautions
Maintenance Manuals	Eddy Current Inspection
Overhaul Manual	Basic Principles
Structural Repair Manual	Principles of Operations
Illustrated Parts Catalog	Eddy Current Instruments
Visual Inspection Techniques	Ultrasonic Inspection
Types of Defects	Pulse Echo
External Damage	Through Transmission
Inlets and Exhausts 18.4	Resonance 18 17

Couplants	Maintenance Inspection / Quality Control / Quality	
Inspection of Bonded Structures	Assurance	
Acoustic Emission Inspection	Additional Maintenance Procedures	
Magnetic Particle Inspection	Control of Life-limited Components	
Development of Indications	Submodule 20 Practice Questions	
Preparation of Parts for Testing	Submodule 20 Practice Answers	. 20.8
Effects of Flux Direction		
Effects of Flux Density	7.21 DOCUMENTATION AND COMMUNICATION	21.1
Magnetizing Methods	Documentation	. 21.1
Identification of Indications	Task Cards	. 21.1
Magnaglo Inspection	Work Reports / Technical Records	
Indicating Mediums	Personal Logbooks	. 21.2
Radiographic	Troubleshooting Reports	
Radiographic Inspection	Shift Handover Instructions	. 21.2
Radiation Hazards	The Handover Procedure	. 21.3
inspection of Composites	Communication	. 21.3
Tap Testing	Listening	. 21.3
Electrical Conductivity	Asking Questions	. 21.3
Thermography	Written Communication	. 21.3
Section D	Basic Elements of Communication	. 21.3
Disassembly and ReAssembly Techniques	The Source	. 21.4
Replacement of Major Components and Modules 18.23	The Receiver	. 21.4
Disassembly and Reassembly of Major Components 18.23	Effective Communication	. 21.4
Disassembly and Reassembly of Minor Components 18.24	Clarity	. 21.4
Basic Disassembly and Reassembly Techniques	Comprehensive	. 21.4
Discarding of Parts	Concise	
Freeing Seized Components	Barriers to Effective Communication	. 21.4
Assembly	Lack of Common Experience	. 21.4
Section E	Lack of Precision	. 21.4
Trouble Shooting Techniques	Interference	. 21.4
Submodule 18 Practice Questions	Writing Reports and Essays	. 21.4
Submodule 18 Practice Answers	How to Write an Essay Answer	. 21.5
	Study the Question	. 21.5
7.19 ABNORMAL EVENTS19.1	Planning	. 21.5
Section A	Writing the Essay	
Special Inspections	Hints and Tips	. 21.5
Inspection following Lightening Strikes and HIRF	Submodule 21 Practice Questions	
Penetration	Submodule 21 Practice Answers	. 21.8
Lightning Strikes		
High Intensity Radiated Fields (HIRF) Penetration 19.2	Acronym Definitions	A.1
Specific Testing - HIRF		
HIRF Test Equipment		
Signal Pulse Generators		
Pulse Amplifiers		
RF Power Meters		
EMC Antennas		
Submodule 19 Practice Questions		
Submodule 19 Practice Answers		
7.20 MAINTENANCE PROCEDURES20.1		
Maintenance Planning		
Modification Procedures		
Stores Procedures		
Certification and Release Procedures		
Interface with Aircraft Operation 20.5		

AIRPLANE DAMAGE CONSIDERATIONS

Personnel performing fuel tank work may damage the airplane if they are not trained to avoid such damage. The mating surfaces of the access hole and covers should be protected during entry so that the surfaces are not scratched or otherwise damaged. Components inside the tanks, such as fuel pumps, quantity systems and associated wiring and conduits are also vulnerable if they are struck or dislodged. Finally, the containment properties of the fuel tank can be compromised if the sealant is dislodged or if fuel tank bladders are penetrated.

BALLISTIC RECOVERY SYSTEMS

AWARENESS AND PRECAUTIONS REGARDING BALLISTIC RECOVERY SYSTEMS

BASIC UNDERSTANDING

Once the domain of microlights and small homebuilt aircraft, ballistic recovery systems can now be found on many general aviation aircraft including Cessna, Cirrus and even some light jets. These systems are designed as a last resort in the event of a collision, structural failure or engine failure over inhospitable terrain. While these events are extremely rare, the principle manufacturer claims over 380 "saves" to date, and many light aircraft manufacturer's now offer this option to ease the fears of buyers. Therefore, it not be uncommon for a light aircraft AMT to come across these systems in their daily work. [Figure 1-7]

PRIMARY COMPONENTS

Most ballistic recovery systems are rocket fired where a small solid fueled rocket type device pulls the parachute from its container stored inside the aircraft. However, some older systems operate more like a mortar where an explosive charge pushes the tightly packed canopy from a tube. In either case, the principle components of all systems include the parachute itself (canopy, suspension lines and risers), a pyrotechnic device and its igniter, an in-cockpit actuation handle, and the various structural components to house these parts and attach them to the aircraft.

In the event of an emergency, the system is activated by the pilot via an actuation handle in the cockpit. [Figure 1-8] The handle activates a rocket motor which extracts a harness and the packed

Figure 1-7. A ballistic parachute recovery of a Cirrus SR22.

Figure 1-8. An actuation handle with its remove-before-flight safety pin in place.

canopy from its container located inside the aircraft. Once the canopy is extended it unfurls and lowers the aircraft at a survivable rate. [Figure 1-9]

SAFETY AROUND BALLISTIC RECOVERY SYSTEMS

The primary safety concern when working with or near ballistic systems is the unintentional firing of the rocket itself. Being struck by this device exiting the aircraft can be fatal. Never position yourself or allow others in the potential path of the rocket device. When handling a device that is not installed on the aircraft be aware of where the rocket is pointed at all times. Treat the device like a loaded gun. Even with the safety flag installed in the activation handle, know that a potential for an unintentional firing still exists, particularly if the device has been subjected to shock or high Gs. Mishandling or attempting to modify the igniter, rocket or any other component of a ballistic system can also cause an unintentional firing.

INSPECTION AND MAINTENANCE

Preflight and other inspections of ballistic parachute systems are primarily for a system's cleanliness, contamination, corrosion and other damage, and for the proper and secure attachment of all components; particularly the actuation handle, bridals and other attach points to the airframe. The parachute container must be

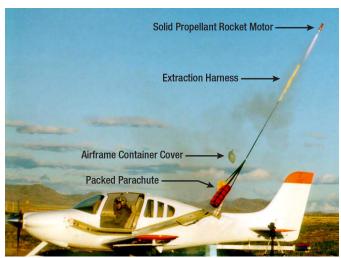


Figure 1-9. The firing sequence of a rocket propelled parachute system.

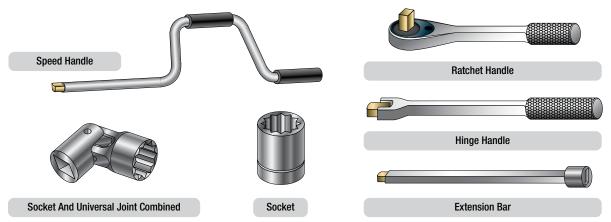


Figure 3-10. Socket wrench set.

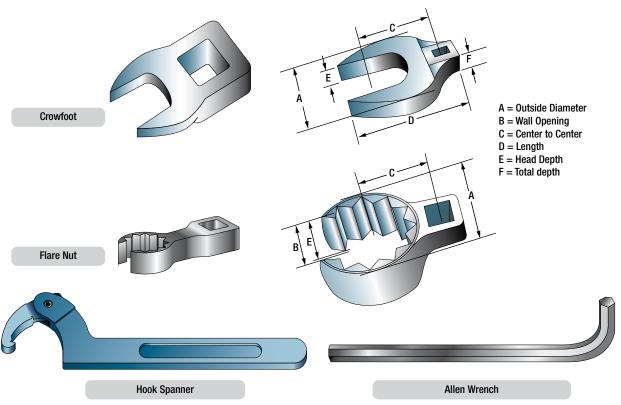


Figure 3-11. Special wrenches.

The hook spanner is for a round nut with a series of notches cut in the outer edge. This wrench has a curved arm with a hook on the end that fits into one of the notches on the nut. The hook is placed in one of these notches with the handle pointing in the direction the nut is to be turned.

Some hook spanner wrenches are adjustable and will fit nuts of various diameters. U-shaped hook spanners have two lugs on the face of the wrench to fit notches cut in the face of the nut or screw plug. End spanners resemble a socket wrench, but have a series of lugs that fit into corresponding notches in a nut or plug. Pin spanners have a pin in place of a lug, and the pin fits into a round hole in the edge of a nut. Face pin spanners are similar to the U-shaped hook spanners except that they have pins instead of lugs.

Most headless setscrews are the hex-head Allen type and must be installed and removed with an Allen wrench. Allen wrenches are six-sided bars in the shape of an L, or they can be hex-shaped bars mounted in adapters for use with hand ratchets. They range in size from ¾4 to ½-inch and fit into a hexagonal recess in the setscrew.

STRAP WRENCHES

The strap wrench can prove to be an invaluable tool for the AMT. By their very nature, aircraft components such as tubing, pipes, small fittings, and round or irregularly shaped components are built to be as light as possible, while still retaining enough strength to function properly. The misuse of pliers or other gripping tools can quickly damage these parts. If it is necessary to grip a part to hold it in place, or to rotate it to facilitate removal, consider using a strap wrench that uses a plastic covered fabric strap to grip the part. [Figure 3-12]

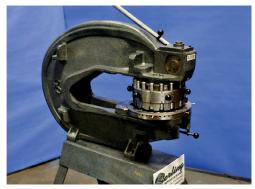


Figure 3-44. Rotary punch press.

Figure 3-45. Foot-operated squaring shear.

Figure 3-46. Power squaring shear.

When cutting to a line, place the sheet on the bed of the shears in front of the cutting blade with the cutting line even with the cutting edge of the bed. To cut the sheet with a foot shear, step on the treadle while holding the sheet securely in place.

Squaring requires several steps. First, one end of the sheet is squared with an edge (the squaring fence is usually used on the edge). Then, the remaining edges are squared by holding one squared end of the sheet against the squaring fence and making the cut, one edge at a time, until all edges have been squared.

When several pieces must be cut to the same dimensions, use the backstop, located on the back of the cutting edge on most squaring shears. The supporting rods are graduated in fractions of an inch and the gauge bar may be set at any point on the rods. Set the gauge bar the desired distance from the cutting blade of the shears and push each piece to be cut against the gauge bar. All the pieces can then be cut to the same dimensions without measuring and marking each one separately.

SANDERS

DISK SANDER

Disk sanders have a powered abrasive-covered disk or belt and 👸 are used for smoothing or polishing surfaces. The sander unit uses $\frac{1}{2}$ abrasive paper of different grits to trim metal parts. [Figure 3-47]

It is much quicker to use a disk sander than to file a part to the correct dimension. The combination disk and belt sander has a vertical belt sander coupled with a disk sander and is often used in a metal shop.

BELT SANDER

The belt sander uses an endless abrasive belt driven by an electric motor to sand down metal parts much like the disk sander unit. The abrasive paper used on the belt comes in different degrees of grit or coarseness. The belt sander is available as a vertical or horizontal unit. The tension and tracking of the abrasive belt can be adjusted so the belt remains centered on its rollers. [Figure 3-48]

GRINDERS

Grinding machines come in a variety of types and sizes, depending upon the class of work for which they are to be used. Dry and/or wet grinders are found in airframe repair shops. Grinders can be

Figure 3-47. Disk Sander.

Figure 3-48. Belt sander.

drills used to cut steel and cast iron, the angle should be 59° from the axis of the drill. For faster drilling of soft materials, sharper angles are used.

The twist drill should be sharpened at the first sign of dullness. For most drilling, a twist drill with a cutting angle of 118° (59° on either side of center) will be sufficient; however, when drilling soft metals, a cutting angle of 90° may be more efficient. Typical procedures for sharpening drills are as follows: [Figure 3-72]

- a. Adjust the grinder tool rest to a height for resting the back of the hand while grinding.
- b. Hold the drill between the thumb and index finger of the right or left hand. Grasp the body of the drill near the shank with the other hand.
- c. Place the hand on the tool rest with the centerline of the drill making a 59° angle with the cutting face of the grinding wheel. Lower the shank end of the drill slightly.
- d. Slowly place the cutting edge of the drill against the grinding wheel. Gradually lower the shank of the drill as you twist the drill in a clockwise direction. Maintain pressure against the grinding surface only until you reach the heel of the drill.
- e. Check the results of grinding with a gauge to determine whether or not the lips are the same length and at a 59° angle.

Alternatively, there are commercially available twist drill grinders available, as well as attachments for bench grinders which will ensure consistent, even sharpening of twist drills.

DRILL BIT SIZES

Drill diameters are grouped by three size standards: number, letter, and fractional. The decimal equivalents of standard drill are shown in **Figure 3-73**.

The diameter of a twist drill may be given in one of three ways: (1) by fractions, (2) letters, or (3) numbers. Fractionally, they are classified by sixteenths of an inch (from ½6 to 3½-inch), by thirty-seconds (from ½2 to 2½-inch), or by sixty-fourths (from ¼4 to 1¼-inch).

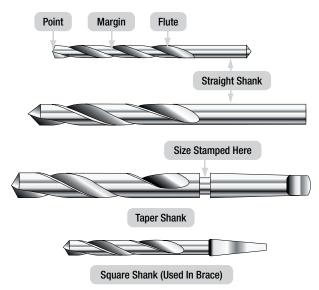


Figure 3-71. Drill types.

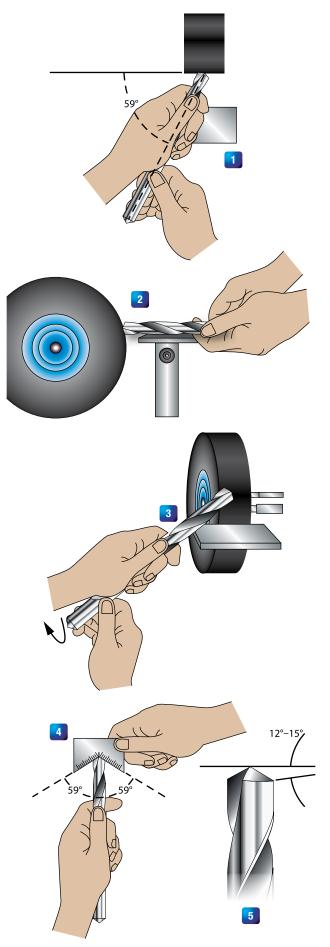


Figure 3-72. Drill sharpening procedures.

Page 3.30 - Submodule 3

Maintenance Practices

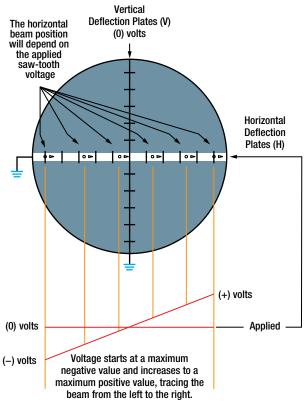
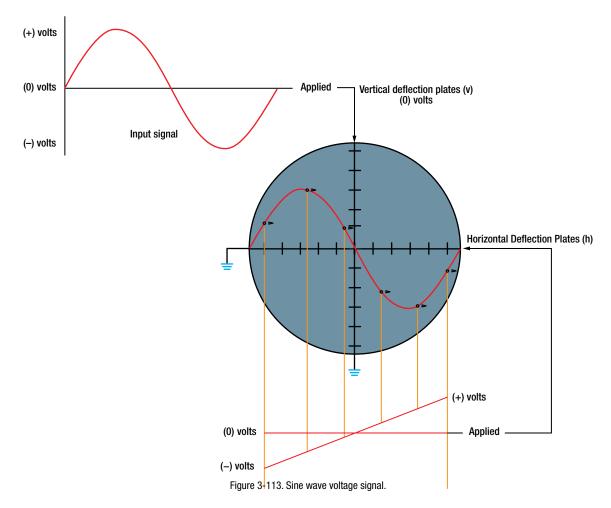


Figure 3-112. Saw-tooth applied voltage.

When the saw-tooth reaches the end of its sweep from left to right, the beam then rapidly returns to the left side and is ready to make another sweep. During this time, the electron beam is stopped or blanked out and does not produce any kind of a trace. This period of time is called flyback.

VERTICAL DEFLECTION


If this same signal were applied to the vertical plates, it would also produce a vertical line by causing the beam to trace from the down position to the up position.

TRACING A SINE WAVE

Reproducing the sine wave on the oscilloscope combines both the vertical and horizontal deflection patterns. [Figure 3-113] If the sine wave voltage signal is applied across the vertical deflection plates, the result will be the vertical beam oscillation up and down on the screen. The amount that the beam moves above the centerline will depend on the peak value of the voltage. While the beam is being swept from the left to the right by the horizontal plates, the sine wave voltage is being applied to the vertical plates, causing the form of the input signal to be traced out on the screen.

CONTROL FEATURES ON AN OSCILLOSCOPE

There are many different styles of oscilloscopes, which range from the simple to the complex, they all have some controls in common. Apart from the screen and the ON/OFF switch, some of these controls are listed next.

