

UNMANNED AERIAL SYSTEMS THE DEFINITIVE GUIDE

BY MICHAEL LEASURE

TABLE OF CONTENTS

Unmanned Aerial Systems: The Definitive Guide	2	Stresses in Structural Repairs	34
About the Author	3	Tension	35
Dedication	4	Compression	35
Acknowledgments	4	Shear	35
		Compound Stresses	35
Chapter 1		Aerospace Materials and their Properties	35
Introduction to Unmanned Aerial Systems	9	Wooden Structures	35
		Adhesives	36
Chapter 2		Preparation for the Application of Adhesives	36
Unmanned Aerial Vehicle Design and Construction	13	Fabric Coverings	37
Introduction to Designs	13	Metallic Structural Materials	38
Mission Driven Design	13	Structural Fasteners	39
Platform Selection	14	Blind Rivets	40
Specific Platform Advantages and Disadvantages	14	Metal Airframe Inspection	40
Rotorcraft Advantages and Disadvantages	15	Types of Metallic Damage and Defects	41
Hybrid Designs and Airships	16	Classification of Metal Damage	42
Powerplant Selection	17	Composite Structures	44
Build, Modify or Readymade	18	Materials	44
Aerodynamics and Flight Controls	18	Laminates	44
Forces Acting On an Aircraft	18	Types of Composite Fibrous Materials	45
Airfoils and Lift	19	Carbon and/or Graphite Fiber	45
Airfoil Shapes	20	Matrix Materials	45
Wing Configurations	21	Pre-Impregnated Products	46
Propellers and Rotorcraft	22	Wet Layup Process	46
Axes of Motion of an Aircraft	23	Sandwich Structures	47
Aircraft Stability and Control	24	Foam Core Structures	47
Unique Forces Acting on the Helicopter	24	Composite Structural Damage	48
Torque Compensation	25	Inspection of Composite Materials	49
Unmanned Multirotor Aerodynamics	26	Nondestructive Inspection, Composites	49
Multirotor Stability	27	Composite Repair Techniques	50
Flight Controller	27	Prepreg Composites	51
Aircraft Loads and Stress	28	Aircraft Structures, Damage and Repair	52
Multiple Stresses	29	Fuselage	52
Stress Considerations in Repair	29	Wings	53
Fuselage	30	Flight Control Surfaces	55
Truss Type	30	Dual Purpose Flight Control Surfaces	56
Monocoque Type	30	Fabric	56
Semimonocoque Type	31	Landing Gear	56
Wing Spars	31	Helicopter Structure	57
Wing Ribs	31		
Wing Skin	32	Chapter 4	
		Electricity, Electrical, Communications and Navigation Systems	. 59
Chapter 3		Basic Electricity	59
Aircraft Structures, Materials, and Repair	33	Current	59
Aircraft Structural Concepts	33	Resistance	60

Conductors and Insulators	60	Transceivers	87
Power	61	Internet Wi-Fi	87
Electrical Energy Production	61	Mobile Phone Technology	88
Pressure	61	Bluetooth	89
Chemical	62	Aviation Navigation Systems	89
Fuel Cells	63	VOR	89
Thermal Electricity Generation	64	Tactical Air Navigation (TACAN)	89
Solar Energy	64	Global Navigation Satellite System	90
Mechanical Generators	64	Global Positioning System	90
Direct and Alternating Current	64	GNSS Augmentation	90
Circuit Protection Devices	65	Satellite Based Augmentation Systems	91
Switches	66	Ground-Based Augmentation System	91
Switch Types	66	ADS-B	92
Motors	67		
Circuits	67	Chapter 5	
Semiconductors	67	Powerplant Theory and Operation	93
Logic Circuits	68	Internal Combustion-Reciprocating Engines	93
Instrument Systems	69	Reciprocating Engine Operation	93
Instrument Components	69	Internal Combustion Engine Terminology	94
Instrument Classifications	69	Four-Stroke or Four-Cycle Engine	94
Instrument Operating Principles	69	Intake Stroke	95
Types of Pressure	71	Valve Timing	95
Pressure Measuring Instruments	72	Compression Stroke and Ignition	96
Pressure Switches	72	Power Stroke	96
Pitot-Static Systems	73	Exhaust Valve	96
Altimeters and Altitude	74	Exhaust Stroke	96
Speed and Distance Measurements	76	Two-Stroke Engines	97
Airspeed Indicators	76	Diesel Cycle Engines	97
Mechanical Motion Indicators	77	Diesel Engine Fuel	97
Accelerometers	78	Engine Power and Efficiency Calculations	98
Stall Warning and Angle of Attack Indicators	78	Work	98
Temperature Measuring Instruments	79	Horsepower	98
Non-Electric Temperature Indicators	79	Piston Displacement	98
Electrical Temperature Measuring Indicators	80	Area of a Circle	99
Direction Indicating Instruments	80	Compression Ratio	99
Solid State Magnetometers	80	Gas Turbine Engine Characteristics	100
Attitude Indicators	80	Gas Turbine Types and Operation	100
Communication and Navigation Systems	81	Electric Motor Propulsion Characteristics	102
Analog and Digital Signals	81	Types of Electric Motors	102
Radio Communication	82	Electronic Speed Control (ESC)	102
Radio Wave Creation and Transmission	83	Inrunner versus Outrunner Motors	103
Commonly Used Unmanned Aircraft Antennas	85	Electric Motor Power Ratings and Selection	104
Skew-Planar Wheel Antenna	86	Watt-Motor Comparison	
Cloverleaf Antenna	86	KV or kV Motor Rating	104
Dipole Antenna	86	Powerplant Inspection and Maintenance	105
Patch Antenna	86	Fueled Engine Maintenance	105
Antenna Wiring	86		

Chapter 6		Instrument Charts	129
Flight Control	107	Air Traffic Control Facilities	129
Control Systems	107	Terminal Radar Approach Control (TRACON)	130
Manual Flight Control	107	Combined Radar Approach Control and Tower with Radar	131
Assisted Manual Control	108	Enroute air traffic control	131
Autonomous Flight Control	109	Flight Service Stations	131
Telemetry	111	ATC Services in Different Airspace Classes	131
Data Logging	111	Class F and G Airspace	133
Failsafe Systems	112	Special Use Airspace	133
Firmware	112	Prohibited Areas	134
Autopilot Installation	113	Restricted Areas	134
Autonomous Testing	114	Temporary Flight Restrictions	134
Test Flight and Flight Test	115	Special flight rules areas	135
First Person View (FPV)	115	DC Flight Restricted Zone and Special Flight Rules Area	135
		Warning Area	135
Chapter 7		Military Operations Area	136
Sensors and Payloads	117	Military Training Routes	136
Payload Installation	117	Alert Areas	136
Payload Integration	118	Controlled Firing Areas	136
Payload Mounting Systems	118	Communications Systems	137
Gyro Stabilization	119	Radio Phraseology	137
Air Sampling Payloads	119	Standard Pronunciation	137
Acoustic Payloads	120	Numbers	137
Unconventional Payloads	120	Altitudes	137
Weight and Balance	121	Time	138
Aircraft Weight	121	Altimeter Settings	139
Effects of Weight	121	Wind Direction and Velocity	139
Weight Limitations	122	Headings	139
Center of Gravity	122	Aircraft Speeds	139
Center of Gravity Calculation	123	Air Traffic Control Facilities	140
Calculating an Aircraft's CG	123	Airways, Routes, and Navigation Aid Descriptions	140
Stability and Balance	124	Aircraft Identification	140
Rotorcraft Stability	124	VHF Omnidirectional Range (VOR)	141
Mechanical Balancing	125	DME Position Determination	142
Special Stability Issues	125	Tactical Air Navigation (TACAN)	142
		VORTAC	142
Chapter 8		Area Navigation	142
Airspace Operations	127	Global Navigation Satellite System	142
Airspace	127	Global Positioning System	143
Airspace Classes and Navigational Charts	128	GNSS Augmentation	143
IFR Flight in Controlled Airspace (Class A, B, C, D, and E)	128	Satellite Based Augmentation Systems	143
UAS and VFR Flight in Controlled Airspace (Class A, B, C, D	, and	Ground-Based Augmentation System	144
E)	128	Airport Layout and Runway Numbering	144
IFR Flight in Uncontrolled Airspace (Class G)	129	Weather	146
UAS and VFR Flight in Uncontrolled Airspace (Class G)	129	Atmosphere	146
Aeronautical Charting	129	Atmospheric Pressure	147
Sectional Charts	129	Altitude and Flight Performance	147

Wind and Air Currents	148	Systems Training	173
Convective Air Currents	148	Battery Management	174
Effect of Obstructions on Wind	149	Documents Relevant to Performance and Flight	174
Wind and Pressure Representation on Surface		Pilots (Operators) Operating Handbook	174
Weather Maps	149	Type Certificate Data Sheets	175
Moisture and Temperature	150	Structural Repair Manual	175
Relative Humidity	151	Weight and Balance Forms	175
Temperature/Dew Point Relationship	151	Airworthiness Directives	176
Dew, Frost and Fog	152	Operator's Logbook	176
Clouds	152	Signal Spoofing	177
Cloud Types	152	Encryption	177
Cloud Coverage	154	Unmanned Systems Human Factors and Safety	177
Visibility	155		
Precipitation	155	Chapter 10	
Air Masses	156	Regulations	181
Fronts	157	Federal Aviation Regulations	181
Warm Front	157	Proposed New UAS Rules	184
Cold Front	157	Operational Requirements	184
Stationary Front	158	Vehicle Requirements	184
Occluded Front	158	Operator requirements	185
Thunderstorms	158	Operational Requirements	185
Squall Line	159	MicroDrone Option	185
Tornadoes	159	Proposed FARs that relate to UAVs	186
Hail	159	State and Local Law	186
Observations	159		
Surface Aviation Weather Observations	159	Chapter 11	
Aviation Routine Weather Report (METAR)	160	Future Trends and Technology	199
Radar Observations	161	Power Systems	199
Satellite Observations	161	Larger Aircraft	200
Aviation Forecasts	161	Collision Avoidance	200
Terminal Aerodrome Forecasts (TAF)	161	Regulations	
Area Forecasts	163	Future Applications and Deployment	201
Weather Charts	164	Artificial Intelligence	201
Surface Analysis Chart	164	Summary of Trends	201
Weather Depiction Chart	164		
Significant Weather Prognostic Charts	165	Index	211
		Workbook	215
Chapter 9		Workbook Answer Key	293
Flight Operations	167		
Location and Environment	167		
Aircraft Launch and Recovery	167		
Aircraft Retrieval	168		
Operational Considerations	169		
Auxiliary Equipment	169		
Flight Profile and Payload Planning	171		
Post Flight Analysis	171		
Flight and Systems Training	171		

INTRODUCTION TO UNMANNED AERIAL SYSTEMS

Civilian unmanned aviation systems (UAS) are emerging as a significant new segment of aviation. An unmanned aerial vehicle (UAV) is a type of aircraft, which has no onboard crew. UAVs are sometimes known as both autonomous drones and remotely piloted vehicles (RPVs). The combination of a UAV and the systems needed to guide and control it are known as an unmanned aerial system.

Unmanned flight is not a new concept. Unmanned balloons were developed as military weapons in the mid-1800s. Further experimentation occurred after the turn of the century with the development of drones controlled by primitive autopilot and flight control systems. Other UAVs were built that were remotely flown from the ground through the use of radio equipment. As early as 1916 an unmanned, radio-controlled "torpedo" was being developed by the British company Sopwith. The craft spanned 14 feet and had a 35 horsepower engine.

Radio interference from the engine's magneto was a problem and required locating the control radio in the tail of the aircraft. The weight of the radio and flight control equipment, as well as radio and other technology limitations, were an impediment to the widespread use of these types of aircraft.

In 1917, less than 20 years after the Wright brothers first flew, and ten years before Lindbergh's historic flight, the Kettering Bug was developed for the U.S. Army (the Air Force did not yet exist). The "Bug" carried 300 pounds of explosives, flew by radio control to its target, then shed its wings, dropping straight down and exploding on or near its target. Both the British and the U.S. military continued

Figure 1-1. Kettering bug.

Figure 1-2. A restored RP-2 Dennyplane aerial gunnery drone.

Figure 1-3. German V1 buzz bomb pilotless aircraft.

Figure 1-4. U.S. Navy Firebee.

work on "pilotless" aircraft during the period between WWI and WWII. Designers believed that remotely piloted aircraft could be useful for training anti-aircraft gunners and fighter pilots. In 1935 Reginald Denny, a British transplant living in the U.S., demonstrated a radio controlled prototype target drone to the US Army. This aircraft, eventually known as the RP-2, was accepted by the Army and was subsequently modified and built in large numbers. By the end of World War II close to 20,000 drones had been built and used by the Army and Navy for target practice.

At about the same time, the Germans developed the V1. A rudimentary UAV used to fly explosives from Germany to London, the V1 was equipped with a dampened pendulum system that controlled the aircraft pitch. A crude gyrocompass provided stability and flight control, while power was provided by a large pulse jet engine. The V1 was essentially operated by pointing it towards the target, regulating flight time, speed, and altitude, to affect an impact at the chosen location.

While the military has developed ever larger and more sophisticated unmanned aircraft, rapid development has occurred in the smaller, more affordable, civilian unmanned aerial systems. As navigation and flight control systems have become smaller and less expensive to purchase, UAVs have become less costly and easier to operate than ever before. This has opened up the possibility of widespread civilian use. In recent years, UASs have declined in price such that quite capable platforms can be obtained for less than \$1,000 that are easy to control, relatively simple to operate, and capable of flying at reasonable altitudes and airspeeds for up to an hour at a time. Intense development by modelers and hobbyists has contributed to commercial designs that let virtually anyone with the interest to fly UAVs to do so.

Figure 1-5. IAI Scout type reconnaissance aircraft.

None of these small UAVs would have been possible without advances in technology like the development of lightweight composite aircraft structures such as carbon fiber, fiberglass, and foam cores. Increased battery capacity, combined with lighter weight structures and the development of more powerful and efficient electric motors, has made the physical design and operations of UAVs much easier. But probably the most enabling development has been the miniaturization and technology advances in computer communications, control, and processing systems. The advances in navigation sensors, cameras, computer control chips, and software, as well as the commonplace use of Wi-Fi and Bluetooth communications devices have made it possible for the development and proliferation of UAVs.

For decades, aircraft operations over the U.S. were primarily separated into recreational model aircraft flight and manned aircraft operations (private, commercial and military). Further distinctions were made utilizing aircraft weight and speed with

regulatory requirements increasing with each. Historically, the aviation community relied upon organizations such as the Academy of Model Aeronautics (AMA) to establish, and communicate, safety protocols for operating model aircraft. The FAA issued suggestions in 1981 for model aircraft operations in the form of Advisory Circular AC 91-57, Model Aircraft Operating Standards. This document outlined recommended guidelines and provided modelers with standards to follow regarding safe operations. The current weight limit of 55 pounds for recreational model aircraft, as well as the maximum operating altitude of 400 feet above ground level (AGL), can trace their origins to this document and the AMA. Manned aircraft operators are required to remain at least 500 feet away from persons, vessels, vehicles, and structures, except for the purpose of take-off and landing. The 100 feet separation provided a safety margin that proved effective for decades.

With the capability to virtually enter the cockpit of their model aircraft via a small video camera and radio connection, the first person viewer (FPV) capability allowed model aircraft to fly beyond the line of sight of the operator. Another technological advance in the form of autonomous flight, with a Global Positioning System (GPS) equipped autopilot, allows operations beyond a pilot's line of sight.

Figure 1-6. FPV allows operators a pilot's view from their aircraft.

Figure 1-7. Multirotor UAV.

As these aircraft proliferated, the burden for collision avoidance began to rest with the manned aircraft pilot who could not adequately see, nor avoid, these small unmanned aircraft. The unmanned pilot, in turn, cannot maintain adequate situational awareness with FPV due to the limited field of view of the camera. Even with a swiveling, gimbaled camera system, the speed difference between a hovering multirotor and fixed wing manned aircraft renders collision avoidance difficult if not impossible. The safety concerns were such that the FAA needed to begin the lengthy and difficult regulatory process.

There is no denying that unmanned civilian aircraft offer possibilities in areas of precision agriculture, air sampling, surveillance, mapping, recreation, and other area beyond our imagination. UASs are here to stay as a new and rapidly growing segment of the aviation industry. Their integration into the airspace system needs to be balanced between safety, privacy, and the need to not stifle innovation and progress. It is the purpose of this text to educate those individuals (designers and builders, operators, observers, and technicians) involved in this exciting new segment of aviation in an effort to provide that needed level of safety.