
AERODYNAMICS FOR NAVAL AVIATORS

by H. H. Hurt, Jr. University of Southern California

ISSUED BY THE OFFICE OF THE CHIEF OF NAVAL OPERATIONS AVIATION TRAINING DIVISION

U.S. NAVY, 1960

NAVWEPS 00-80T-80

REVISED JANUARY 1965

HBC0894 Printed in the USA

TABLE OF CONTENTS

PREFACE	Page iii
CHAPTER I: BASIC AERODYNAMICS	
WING AND AIRFOIL FORCES PROPERTIES OF THE ATMOSPHERE Static pressure Temperature	1
Density Viscosity Standard atmosphere Pressure altitude Density altitude	
BERNOULLI'S PRINCIPLE AND SUBSONIC AIRFLOW	4
Bernoulli's equation	6
Incompressible flow Variation of static pressure and velocity Kinetic and potential energy of flow Static and dynamic pressure, <i>q</i> Factors affecting dynamic pressure	
Airspeed measurement.	9
Stagnation pressure Measurement of dynamic pressure Pitot and static sources Indicated airspeed Calibrated airspeed Equivalent airpseed True airspeed	
DEVELOPMENT OF AERODYNAMIC FORCES	14
Streamline pattern and pressure distribution	14 16
Circulation Pressure distribution	
Airfoil terminology Aerodynamic force coefficient Basic lift equation	20 22 23
Lift coefficient	

Dynamic pressure and surface area

۷

Internation of the life operation	Page
Interpretation of the lift equation	23
Lift coefficient versus angle of attack Stall speed and angle of attack	
Angle of attack versus velocity	
Primary control of airspeed	
Airfoil lift characteristics	27
Section angle of attack and lift coefficient Typical section characteristics Effect of thickness and camber	
Drag characteristics	29
Drag equation Drag coefficient versus angle of attack Lift-drag ratio Power-off glide performance	
Airfoil drag characteristics	33
Section drag coefficient Typical section characteristics Effect of thickness and camber Low drag sections	
FLIGHT AT HIGH LIFT CONDITIONS	35
Stall speeds	35
Maximum lift coefficient Stall angle of attack	
Effect of weight Effect of maneuvering flight	35 35
Load factor versus bank angle Stall speed versus load factor	
Effect of high lift devices	37
Effect on stall speed	
Stall angle of attack and stall recovery	39
HIGH LIFT DEVICES	39
Types of high lift devices	41
Plain flap Split flap Slotted flap Fowler flap Slots and slats Boundary layer control	
Operation of high lift devices	43
Flap retraction and extension Changes in lift, drag, and trim Effect of power	
DEVELOPMENT OF AERODYNAMIC PITCHING MOMENTS	
Pressure distribution	47
Center of pressure and aerodynamic center Pitching moment coefficient	47 49
Effect of camber Effect of flaps Relationship between center of pressure, aerodynamic center, and moment coefficient	
Application to longitudinal stability	51
Stability and trim Effect of supersonic flow	

	Page
FRICTION EFFECTS	52
Viscous flow Boundary layers	52 52
Laminar flow Transition Turbulent flow	<i>,</i>
Reynolds Number	54
Definition Skin friction versus Reynolds Number	
Airflow separation	56
Pressure distribution Pressure gradient and boundary layer energy Factors affecting separation	
Scale effect.	59
Effect on aerodynamic characteristics Reynolds Number correlation	

PLANFORM EFFECTS AND AIRPLANE DRAG

EFFECT OF WING PLANFORM	61
Description of planform	61
Area, span, and chord Aspect ratio and taper Sweepback Mean aerodynamic chord	
Development of lift by a wing	63
Vortex system Tip and bound vortices Induced flow and downwash Section angle of attack Induced angle of attack	
INDUCED DRAG	66
Induced angle of attack and inclined lift	66
Induced drag coefficient	68
Effect of lift coefficient Effect of aspect ratio	
Effect of lift Effect of altitude. Effect of speed Effect of aspect ratio	68 69 69 71
Lift and drag characteristics Influence of low aspect ratio configurations	
EFFECT OF TAPER AND SWEEPBACK	74
Spanwise lift distribution Local induced flow Effect on lift and drag characteristics	74 76 76
STALL PATTERNS	77
Favorable stall pattern Effect of planform	77 77
Taper Sweepback	
Modifications for stall characteristics	86

	Page
PARASITE DRAG	87
Sources of parasite drag Parasite drag coefficient Parasite and induced drag	87 87 89
Minimum parasite drag coefficient Airplane efficiency factor Equivalent parasite area	
Effect of configuration Effect of altitude. Effect of speed	91 91 91
AIRPLANE TOTAL DRAG	92
Drag variation with speed Induced and parasite drag Stall speed Minimum drag Specific performance conditions Compressibility drag rise	
CHAPTER 2. AIRPLANE PERFORMANCE	

REQUIRED THRUST AND POWER

DEFINITIONS	96
Parasite and induced drag. Thrust and power required	96 97
VARIATION OF THRUST AND POWER REQUIRED	
Effect of gross weight. Effect of configuration Effect of altitude	99 101 101
AVAILABLE THRUST AND POWER	
PRINCIPLES OF PROPULSION	104
Mass flow, velocity change, momentum change Newton's laws Wasted power Power available Propulsion efficiency	104 104 104 106 106
TURBOJET ENGINES	
Operating cycle Function of the components	107 109
Inlet or diffuser Compressor Combustion chamber Turbine Exhaust nozzle	
Turbojet operating characteristics.	116
Thrust and power available Effect of velocity Effect of engine speed Specific fuel consumption Effect of altitude Governing apparatus Steady state, acceleration, deceleration Instrumentation	

viii

Aircraft Technical Book Company (800) 780-4115 (970)-887-2207 http://www.ACTechBooks.com

NAVWEPS 00-80T-80 TABLE OF CONTENTS

	Page
Turbojet operating limitations	124
Exhaust gas temperature Compressor stall or surge	
Flameout	
Compressor inlet air temperature	
Engine speed Time limitations	
Thrust augmentation	129
Afterburner Water injection	
The gas turbine-propeller combination	132
Equivalent shaft horsepower Governing requirements Operating limitations Performance characteristics	
THE RECIPROCATING ENGINE	135
Operating characteristics	135
Operating cycle	
Brake horsepower	
Torque, RPM, and BMEP Normal combustion	
Preignition and detonation	
Fuel qualities Specific fuel consumption	
Effect of altitude and supercharging Effect of humidity	
Operating limitations	144
Detonation and preignition Water injection Time limitations	
Reciprocating loads	
AIRCRAFT PROPELLERS	
Operating characteristics	145
Flow patterns Propulsive efficiency Powerplant matching Governing and feathering	
Operating limitations	148
ITEMS OF AIRPLANE PERFORMANCE	
STRAIGHT AND LEVEL FLIGHT	150
Equilibrium conditions Thrust and power required Thrust and power available Maximum and minimum speed	
CLIMB PERFORMANCE	150
Steady and transient climb	150
Forces acting on the airplane	
Climb angle and obstacle clearance Rate of climb, primary control of altitude Propeller and jet aircraft	
Climb performance	156
Effect of weight and altitude Descending flight	

DANCE DEDEODMANCE	Page
RANGE PERFORMANCE	158
General range performance.	158
Specific range, velocity, fuel flow Specific endurance Cruise control and total range	
Range, propeller driven airplanes.	160
Aerodynamic conditions Effect of weight and altitude Reciprocating and turboprop airplanes	
Range, turbojet airplanes	164
Aerodynamic conditions Effect of weight and altitude Constant altitude and cruise-climb profiles	
Effect of wind on range	168
ENDURANCE PERFORMANCE	170
General endurance performance.	170
Specific endurance, velocity, fuel flow	
Effect of altitude on endurance	170
Propeller driven airplanes Turbojet airplanes	
OFF-OPTIMUM RANGE AND ENDURANCE	172
Reciprocating powered airplane Turboprop powered airplane Turbojet powered airplane	172 173 175
MANEUVERING PERFORMANCE	176
Relationships of turning flight	176
Steady turn, bank angle and load factor Induced drag	
Turning performance	178
Turn radius and turn rate Effect of bank angle and velocity	
Tactical performance	178
Maximum lift Operating strength limits Constant altitude turning performance	
TAKEOFF AND LANDING PERFORMANCE	182
Relationships of accelerated motion	182
Acceleration, velocity, distance Uniform and nonuniform acceleration	
Takeoff performance	184
Forces acting on the airplane Accelerated motion Factors of technique	
Factors affecting takeoff performance	187
Effect of gross weight Effect of wind Effect of runway slope Proper takeoff velocity Effect of altitude and temperature Handbook data	

X Aircraft Technical Book Company (800) 780-4115 (970)-887-2207 http://www.ACTechBooks.com

Page

Landing performance	192
Forces acting on the airplane Accelerated motion Factors of technique	
Factors affecting landing performance	196
Effect of gross weight Effect of wind Effect of runway slope Effect of altitude and temperature Proper landing velocity	
Importance of handbook performance data	200

CHAPTER 3. HIGH SPEED AERODYNAMICS

GENERAL CONCEPTS AND SUPERSONIC FLOW PATTERNS

NATURE OF COMPRESSIBILITY	201
Definition of Mach number	202
Subsonic, transonic, supersonic, and hypersonic flight regimes	204
Compressible flow conditions	204
Comparison of compressible and incompressible flow	204
TYPICAL SUPERSONIC FLOW PATTERNS	207
Oblique shock wave	207
Normal shock wave	207
Expansion wave	211
Effect on velocity, Mach number, density, pressure, energy	213
SECTIONS IN SUPERSONIC FLOW	213
Flow patterns	213
Pressure distribution	213
Wave drag	215
Location of aerodynamic center	215

CONFIGURATION EFFECTS

TRANSONIC AND SUPERSONIC FLIGHT	215
Critical Mach number Shock wave formation Shock induced separation. Force divergence Phenomena of transonic flight Phenomena of supersonic flight	215 218 218 218 218 218 220
TRANSONIC AND SUPERSONIC CONFIGURATIONS	220
Airfoil sections Transonic sections Supersonic sections Wave drag characteristics Effect of Mach number on airfoil characteristics	220
Planform effects Effect of sweepback Advantages of sweepback Disadvantages of sweepback Effect of aspect ratio and tip shape	226
Control surfaces Powered controls All movable surfaces	236

	Page
Supersonic engine inlets	238
Internal and external compression inlets	
Inlet performance and powerplant matching	
Supersonic configurations	240
AERODYNAMIC HEATING	242
Ram temperature rise Effect on structural materials and powerplant performance	242 242

CHAPTER 4. STABILITY AND CONTROL

DEFINITIONS

STATIC STABILITY	243
DYNAMIC STABILITY	
TRIM AND CONTROLLABILITY	
AIRPLANE REFERENCE AXES	249

LONGITUDINAL STABILITY AND CONTROL

INGITUDINAL STABILITY AND CONTROL	
STATIC LONGITUDINAL STABILITY	250
General considerations Contribution of the component surfaces Wing Fuselage and nacelles Horizontal tail	250 253
Power-off stability Power effects Control force stability Maneuvering stability Tailoring control forces	259 259 264 268 270
LONGITUDINAL CONTROL	275
Maneuvering control requirement	275

Takeoff control requirement Landing control requirement	275
LONGITUDINAL DYNAMIC STABILITY	279
Phugoid	279 281
MODERNI CONTROL CVCTENC	

MODERN CONTROL SYSTEMS...... 281 Conventional Boosted

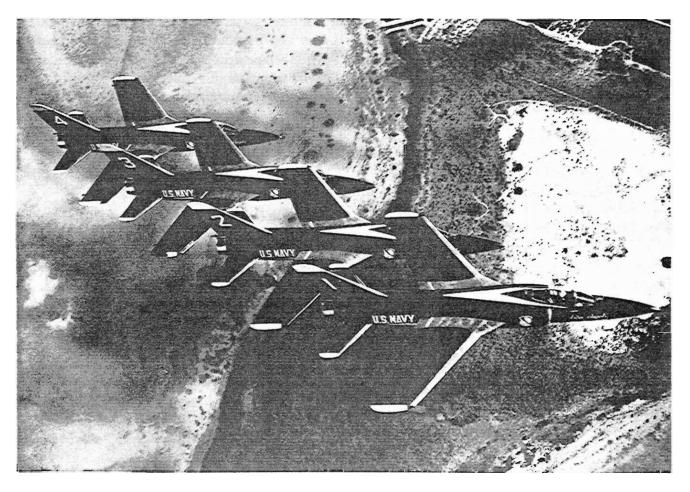
booste	a
Power	operated

DIRECTIONAL STABILITY AND CONTROL

DIRECTIONAL STABILITY	284
Definitions	284
Contribution of the airplane components	285
Vertical tail Wing Fuselage and nacelles Power effects	
Critical conditions	290
DIRECTIONAL CONTROL	290
Directional control requirements. Adverse yaw	291 291

Aircraft Technical Book Company (800) 780-4115 (970)-887-2207 http://www.ACTechBooks.com

Spin recovery Slipstream rotation Cross wind takeoff and landing Asymmetrical power	Page 291 294 294 294
LATERAL STABILITY AND CONTROL	
LATERAL STABILITY	294
Definitions	295
CONTRIBUTION OF THE AIRPLANE COMPONENTS	295
Wing. Fuselage and wing position Sweepback Vertical tail	298 298 298 298
LATERAL DYNAMIC EFFECTS	299
Directional divergence Spiral divergence Dutch roll	
CONTROL IN ROLL	300
Rolling motion of an airplane	300
Rolling performance Critical requirements	301 305
MISCELLANEOUS STABILITY PROBLEMS	509
LANDING GEAR CONFIGURATIONS	305
Tail wheel type Tricycle type Bicycle type	
SPINS AND PROBLEMS OF SPIN RECOVERY	307
Principal prospin moments Fundamental principle of recovery Effect of configuration	
PITCH-UP	313
Definition Contribution of the airplane components	
EFFECTS OF HIGH MACH NUMBER	313
Longitudinal stability and control Directional stability Dynamic stability and damping PILOT INDUCED OSCILLATIONS	314
Pilot-control system-airplane coupling	511
High q and low stick force stability	
ROLL COUPLING	315
Inertia and aerodynamic coupling Inertia and wind axes Natural pitch, yaw, and coupled pitch-yaw frequencies Critical roll rates Autorotative rolling Operating limitations	
HELICOPTER STABILITY AND CONTROL	319
Rotor gyroscopic effects Cyclic and collective pitch Longitudinal, lateral, and directional control Angle of attack and velocity stability Dynamic stability	


CHAPTER 5. OPERATING STRENGTH LIMITATIONS GENERAL DEFINITIONS AND STRUCTURAL REQUIREMENTS

STATIC STRENGTH	Page 326
Limit load Factor of safety Material properties	520
SERVICE LIFE	328
Fatigue consideration Load spectrum and cumulative damage Creep considerations	
AEROELASTIC EFFECTS	330
Stiffness and rigidity	
AIRCRAFT LOADS AND OPERATING LIMITATIONS	
FLIGHT LOADS—MANEUVERS AND GUSTS	331
Load factor Maneuvering load factors Maximum lift capability Effect of gross weight	331 331
Gust load factors. Gust load increment Effect of gust intensity and lift curve slope Effect of wing loading and altitude Effect of overstress.	332 334
	224
THE V-n OR V-g DIAGRAM Effect of weight, configuration, altitude, and symmetry of loading Limit load factors Ultimate load factors Maximum lift capability Limit airspeed Operating envelope Maneuver speed and penetration of turbulence	334
EFFECT OF HIGH SPEED FLIGHT	339
Critical gust Aileron reversal Divergence Flutter Compressibility problems	
LANDING AND GROUND LOADS	343
Landing load factor Effect of touchdown rate of descent Effect of gross weight Forced landing on unprepared surfaces	
EFFECT OF OVERSTRESS ON SERVICE LIFE Recognition of overstress damage Importance of operating limitations	344

CHAPTER 6. APPLICATION OF AERODYNAMICS TO SPECIFIC PROBLEMS OF FLYING

	Page
PRIMARY CONTROL OF AIRSPEED AND ALTITUDE	349
Angle of attack versus airspeed Rate of climb and descent Flying technique	
REGION OF REVERSED COMMAND	353
Regions of normal and reversed command Features of flight in the normal and reversed regions of command	
THE ANGLE OF ATTACK INDICATOR AND THE MIRROR	
LANDING SYSTEM	357
The angle of attack indicator The mirror landing system	
THE APPROACH AND LANDING	360
The approach The landing flare and touchdown Typical errors	
THE TAKEOFF	365
Takeoff speed and distance Typical errors	
GUSTS AND WIND SHEAR	367
Vertical and horizontal gusts	
POWER-OFF GLIDE PERFORMANCE	369
Glide angle and lift-drag ratio Factors affecting glide performance The flameout pattern	
EFFECT OF ICE AND FROST ON AIRPLANE PERFORMANCE	373
Effect of ice Effect of frost	
ENGINE FAILURE ON THE MULTI-ENGINE AIRPLANE	376
Effect of weight and altitude Control requirements	
Effect of turning flight and configuration	
GROUND EFFECT	379
Aerodynamic influence of ground effect Ground effect on specific flight conditions	
INTERFERENCE BETWEEN AIRPLANES IN FLIGHT	383
Effect of lateral, vertical, and longitudinal separation Collision possibility	

BRAKING PERFORMANCE Friction characteristics Braking technique Typical errors of braking technique	Page 387
REFUSAL SPEEDS, LINE SPEEDS, AND CRITICAL FIELD LENGTH	391
Refusal speed Line speeds Critical field length, multi-engine operation	
SONIC BOOMS	396
Shock waves and audible sound Precautions	
HELICOPTER PROBLEMS	399
Rotor aerodynamics Retreating blade stall Compressibility effects. Autorotation characteristics Power settling	400 402 404 405 408
THE FLIGHT HANDBOOK	411
SELECTED REFERENCES	413 414

Chapter 1

BASIC AERODYNAMICS

In order to understand the characteristics of his aircraft and develop precision flying techniques, the Naval Aviator must be familiar with the fundamentals of aerodynamics. There are certain physical laws which describe the behavior of airflow and define the various aerodynamic forces and moments acting on a surface. These principles of aerodynamics provide the foundations for good, precise flying techniques.

WING AND AIRFOIL FORCES

PROPERTIES OF THE ATMOSPHERE

The aerodynamic forces and moments acting on a surface are due in great part to the properties of the air mass in which the surface is operating. The composition of the earth's atmosphere by volume is approximately 78 percent nitrogen, 21 percent oxygen, and 1

1

percent water vapor, argon, carbon dioxide, etc. For the majority of all aerodynamic considerations air is considered as a uniform mixture of these gases. The usual quantities used to define the properties of an air mass are as follows:

STATIC PRESSURE. The absolute static pressure of the air is a property of primary importance. The static pressure of the air at any altitude results from the mass of air supported above that level. At standard sea level conditions the static pressure of the air is 2,116 psf (or 14.7 psi, 29.92 in. Hg, etc.) and at 40,000 feet altitude this static pressure decreases to approximately 19 percent of the sea level value. The shorthand notation for the ambient static pressure is "p" and the standard sea level static pressure is given the subscript "o" for zero altitude, p_0 . A more usual reference in aerodynamics and performance is the proportion of the ambient static pressure and the standard sea level static pressure. This static pressure ratio is assigned the shorthand notation of δ (delta).

· Altitude pressure ratio

$$= \frac{\text{Ambient static pressure}}{\text{Standard sea level static pressure}}$$

 $\delta = p/p_0$

Many items of gas turbine engine performance are directly related to some parameter involving the altitude pressure ratio.

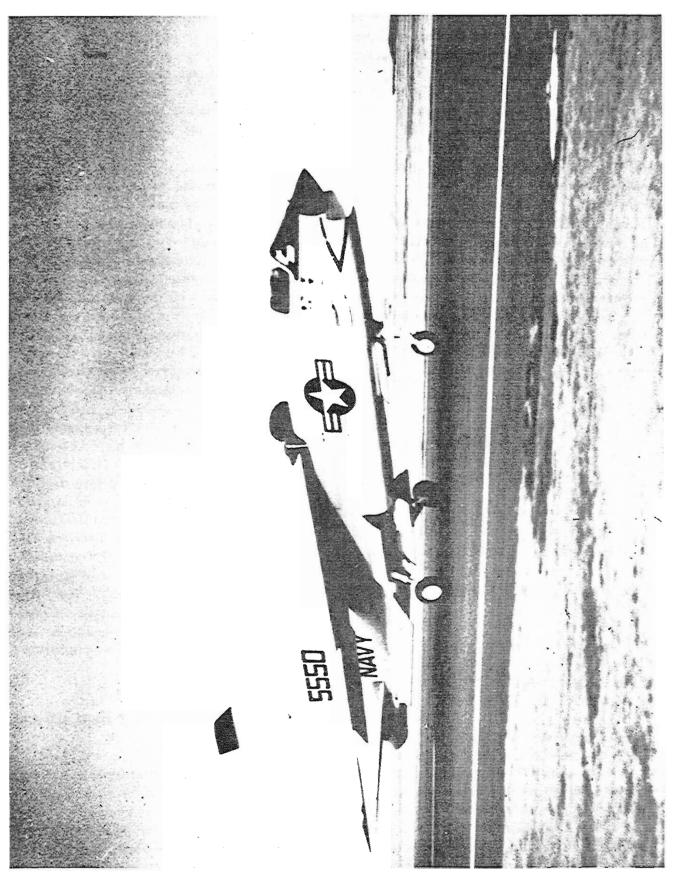
TEMPERATURE. The absolute temperature of the air is another important property. The ordinary temperature measurement by the Centigrade scale has a' datum at the freezing point of water but absolute zero temperature is obtained at a temperature of -273° Centigrade. Thus, the standard sea level temperature of 15° C. is an absolute temperature of 288°. This scale of absolute temperature using the Centigrade increments is the Kelvin scale, e.g., ° K. The shorthand notation for the ambient air temperature is "T" and the standard sea level air temperature of 288° K. is signified by T_0 . The more usual reference is the proportion of the ambient air temperature and the standard sea level air temperature. This temperature ratio is assigned the shorthand notation of θ (theta).

Temperature ratio

Ambient air temperature
Standard sea level air temperature
$\theta = T/T_0$
$C^0 + 273$
$b = \frac{1}{288}$

Many items of compressibility effects and jet engine performance involve consideration of the temperature ratio.

DENSITY. The density of the air is a property of greatest importance in the study of aerodynamics. The density of air is simply the mass of air per cubic foot of volume and is a direct measure of the quantity of matter in each cubic foot of air. Air at standard sea level conditions weighs 0.0765 pounds per cubic foot and has a density of 0.002378 slugs per cubic foot. At an altitude of 40,000 feet the air density is approximately 25 percent of the sea level value.


The shorthand notation used for air density is ρ (rho) and the standard sea level air density is then ρ_0 . In many parts of aerodynamics it is very convenient to consider the proportion of the ambient air density and standard sea level air density. This density ratio is assigned the shorthand notation of σ (sigma).

density ratio =
$$\frac{\text{ambient air density}}{\text{standard sea level air density}}$$

 $\sigma = \rho/\rho_0$

A general gas law defines the relationship of pressure temperature, and density when there is no change of state or heat transfer. Simply stated this would be "density varies directly with pressure, inversely with temperature." Using the properties previously defined,

density ratio =
$$\frac{\text{pressure ratio}}{\text{temperature ratio}}$$

 $\frac{\rho}{\rho_0} = \left(\frac{P}{P_0}\right) \left(\frac{T_0}{T}\right)$
 $\sigma = \delta/\theta$

NAVWEPS 00-80T-80 BASIC AERODYNAMICS

Aircraft Technical Book Company (800) 780-4115 (970)-887-2207 http://www.ACTechBooks.com