Pilot's Handbook of Aeronautical Knowledge

2023

U.S. Department of Transportation FEDERAL AVIATION ADMINISTRATION

Flight Standards Service

Preface

This handbook provides the basic knowledge that is essential for pilots. It introduces pilots to the broad spectrum of knowledge that will be needed as they progress in their pilot training. Except for the Code of Federal Regulations pertinent to civil aviation, most of the knowledge areas applicable to pilot certification are presented. This handbook is useful to beginning pilots, as well as those pursuing more advanced pilot certificates.

Occasionally the word "must" or similar language is used where the desired action is deemed critical. The use of such language is not intended to add to, interpret, or relieve a duty imposed by Title 14 of the Code of Federal Regulations (14 CFR).

It is essential for persons using this handbook to become familiar with and apply the pertinent parts of 14 CFR and the Aeronautical Information Manual (AIM). The AIM is available online at www.faa.gov. The current Flight Standards Service airman training and testing material and learning statements for all airman certificates and ratings can be obtained from www.faa.gov.

This handbook supersedes FAA-H-8083-25B, Pilot's Handbook of Aeronautical Knowledge, dated 2016; the Pilot's Handbook of Aeronautical Knowledge Addendum A, dated February 2021; the Pilot's Handbook of Aeronautical Knowledge Addendum B, dated January 2022; and the Pilot's Handbook of Aeronautical Knowledge Addendum C, dated March 2023.

This handbook is available for download, in PDF format, from www.faa.gov.

This handbook is published by the United States Department of Transportation, Federal Aviation Administration, Airman Testing Standards Branch, AFS-630, P.O. Box 25082, Oklahoma City, OK 73125.

Comments regarding this publication should be emailed to AFS630comments@faa.gov.

Major Enhancements

This revision of the handbook has only been updated to include the following:

- Pilot's Handbook of Aeronautical Knowledge Addendum A, dated February 2021
- Pilot's Handbook of Aeronautical Knowledge Addendum B, dated January 2022
- Pilot's Handbook of Aeronautical Knowledge Addendum C, dated March 2023
- Included language to answer National Transportation Safety Board (NTSB) Safety Recommendation (SR) A-21-020

This revision is considered a minor revision. A major revision is underway and is planned for release June 2024.

Acknowledgments

The Pilot's Handbook of Aeronautical Knowledge was produced by the Federal Aviation Administration (FAA) with the assistance of Safety Research Corporation of America. The FAA wishes to acknowledge the following contributors:

Mrs. Nancy A. Wright for providing imagery of a de Haviland DH-4 inaugural air mail flight (Chapter 1)

The Raab Collection, Philadelphia, Pennsylvania, for images of the first pilot license (Chapter 1)

Sandy Kenyon and Rod Magner (magicair.com) for photo of 1929 TravelAir 4000 (Chapter 1)

Dr. Pat Veillette for information used on decision-making (Chapter 2)

Adventure Seaplanes for photos of a ski and float training plane (Chapter 3)

Jack Davis, Stearman Restorers Asociation, for photo of a 1941 PT-17 Army Air Corps trainer (Chapter 3)

Michael J. Hoke, Abaris Training Resources, Inc., for images and information about composite aircraft (Chapter 3)

Colin Cutler, Boldmethod, for images and content on the topic of ground effect (Chapter 5)

Mark R. Korin, Alpha Systems, for images of AOA disaplys (Chapter 5)

M. van Leeuwen (www.zap16.com) for image of Piaggio P-180 (Chapter 6)

Greg Richter, Blue Mountain Avionics, for autopilot information and imagery (Chapter 6)

Mountain High E&S Company for various images provided regarding oxygen systems (Chapter 7)

Jeff Callahan, Aerox, for image of MSK-AS Silicone Mask without Microphone (Chapter 7)

Nonin Medical, Inc. for image of Onyx pulse oximeter (Chapter 7)

Pilotfriend.com for photo of a TKS Weeping Wing (Chapter 7)

Chelton Flight Systems for image of FlightLogic (Chapter 8)

Avidyne Corporation for image of the Entegra (Chapter 8)

Teledyne Controls for image of an air data computer (Chapter 8)

Watson Industries, Inc. (www.watson-gyro.com) for image of Attitude and Heading Reference system (Chapter 8)

Engineering Arresting Systems Corporation (www.esco.zodiacaerospace.com) for EMAS imagery and EMASMAX technical digrams (Chapter 14)

Caasey Rose and Jose Roggeveen (burningholesinthesky.wordpress.com) for flight checklist image (Chapter 14)

Tim Murnahan for images of EMAS at Yeager Airport, Charleston, West Virginia, and EMAS arrested aircraft (Chapter 14)

Cessna Aircraft Company, Columbia Aircraft Manufacturing Corporation, Eclipse Aviation Corporation, Garmin Ltd., The Boeing Company for images provided and used throughout the Handbook.

Additional appreciation is extended to the Aircraft Owners and Pilots Association (AOPA), the AOPA Air Safety Foundation, the General Aviation Manufacturers Association (GAMA), and the National Business Aviation Association (NBAA) for their technical support and input.

Disclaimer: Information in Chapter 14 pertaining to Runway Incursion Avoidance was created using FAA orders, documents, and Advisory Circulars that were current at the date of publication. Users should not assume that all references are current and should check often for reference updates.

Table of Contents

Prefaceiii	Limitations:	1-17
	Private Pilot	1-17
Acknowledgmentsv	Commercial Pilot	
	Airline Transport Pilot	
Table of Contentsvii	Selecting a Flight School	
	How To Find a Reputable Flight Program	
Chapter 1	How To Choose a Certificated Flight	
Introduction To Flying1-1	Instructor (CFI)	1-19
Introduction1-1	The Student Pilot	
History of Flight1-2	Basic Requirements	
History of the Federal Aviation Administration (FAA) 1-3	Medical Certification Requirements	
Transcontinental Air Mail Route1-4	Becoming a Pilot	
Federal Certification of Pilots and Mechanics1-4	Knowledge and Skill Tests	
The Federal Aviation Act of 19581-6	Knowledge Tests	
Department of Transportation (DOT)1-6	When To Take the Knowledge Test	
ATC Automation1-6	Practical Test	
The Professional Air Traffic Controllers	When To Take the Practical Test	
Organization (PATCO) Strike1-6	Who Administers the FAA Practical Tests?	
The Airline Deregulation Act of 19781-7	Role of the Certificated Flight Instructor	
The Role of the FAA1-7	Role of the Designated Pilot Examiner	
The Code of Federal Regulations (CFR)1-7	Chapter Summary	
Primary Locations of the FAA1-8	Chapter Summary	1 2-
Field Offices1-8	Chapter 2	
Aviation Safety Inspector (ASI)1-9	Aeronautical Decision-Making	2-1
FAA Safety Team (FAASTeam)1-9	Introduction	
Obtaining Assistance from the FAA1-9	History of ADM	
Aeronautical Information Manual (AIM)1-9	Risk Management	
Handbooks1-10	Crew Resource Management (CRM) and Single-	
Advisory Circulars (ACs)1-10	Pilot Resource Management	2-4
Flight Publications1-11	Hazard and Risk	2-4
Pilot and Aeronautical Information1-12	Hazardous Attitudes and Antidotes	
Notices to Airmen (NOTAMs)1-12	Risk	2-6
Safety Program Airmen Notification System	Assessing Risk	2-6
(SPANS)1-14	Mitigating Risk	
Aircraft Classifications and Ultralight Vehicles1-14	The PAVE Checklist	
Pilot Certifications1-16	P = Pilot in Command (PIC)	
Privileges:1-16	A = Aircraft	
Limitations:1-17	V = EnVironment	
Recreational Pilot1-17	E = External Pressures	
Privileges:1-17	Human Factors	
	11uman 1 actors	4-10

Human Benavior	2-11	Chapter 3	
The Decision-Making Process	2-12	Aircraft Construction	3-1
Single-Pilot Resource Management (SRM)	2-13	Introduction	3-1
The 5 Ps Check		Aircraft Design, Certification, and Airworthiness	3-2
The Plan	2-14	A Note About Light Sport Aircraft	3-2
The Plane	2-14	Lift and Basic Aerodynamics	3-2
The Pilot	2-14	Major Components	3-3
The Passengers		Fuselage	3-3
The Programming		Wings	3-3
Perceive, Process, Perform (3P) Model		Empennage	3-6
PAVE Checklist: Identify Hazards and	2-13	Landing Gear	3-7
Personal Minimums	2-15	The Powerplant	3-7
CARE Checklist: Review Hazards and	2 13	Subcomponents	3-8
Evaluate Risks	2-16	Types of Aircraft Construction	3-8
TEAM Checklist: Choose and Implement	2 10	Truss Structure	3-8
Risk Controls	2-16	Semimonocoque	3-9
The DECIDE Model		Composite Construction	3-9
Detect (the Problem)		History	3-9
Estimate (the Need To React)		Advantages of Composites	3-10
Choose (a Course of Action)		Disadvantages of Composites	3-10
		Fluid Spills on Composites	3-11
Identify (Solutions)		Lightning Strike Protection	3-11
Do (the Necessary Actions)		The Future of Composites	
Evaluate (the Effect of the Action)		Instrumentation: Moving into the Future	
Decision-Making in a Dynamic Environment		Control Instruments	
Automatic Decision-Making		Navigation Instruments	
Operational Pitfalls		Global Positioning System (GPS)	
Stress Management		Chapter Summary	
Use of Resources		1	
Internal Resources		Chapter 4	
External Resources		Principles of Flight	4-1
Situational Awareness		Introduction	4-1
Obstacles to Maintaining Situational Awareness		Structure of the Atmosphere	4-1
Workload Management		Air is a Fluid	4-2
Managing Risks	2-25	Viscosity	4-2
Automation	2-25	Friction	4-2
Results of the Study	2-27	Pressure	4-3
Equipment Use	2-27	Atmospheric Pressure	4-3
Autopilot Systems	2-27	Pressure Altitude	
Familiarity	2-27	Density Altitude	
Respect for Onboard Systems	2-29	Effect of Pressure on Density	4-4
Getting Beyond Rote Workmanship	2-29	Effect of Temperature on Density	4-4
Understand the Platform	2-29	Effect of Humidity (Moisture) on Density	
Managing Aircraft Automation	2-29	Theories in the Production of Lift	
Information Management		Newton's Basic Laws of Motion	
Enhanced Situational Awareness		Bernoulli's Principle of Differential Pressure	
Automation Management		Airfoil Design	
Risk Management		Low Pressure Above	
Chapter Summary		High Pressure Below	
•		<u> </u>	

Pressure Distribution	4-8	Weight and Balance	5-40
Airfoil Behavior	4-8	Effect of Weight on Flight Performance	5-42
A Third Dimension	4-9	Effect of Weight on Aircraft Structure	5-42
Chapter Summary	4-9	Effect of Weight on Stability and Controllability.	5-42
		Effect of Load Distribution	5-43
Chapter 5		High Speed Flight	5-44
Aerodynamics of Flight		Subsonic Versus Supersonic Flow	5-44
Forces Acting on the Aircraft		Speed Ranges	
Thrust		Mach Number Versus Airspeed	5-45
Lift		Boundary Layer	
Lift/Drag Ratio	5-5	Laminar Boundary Layer Flow	5-46
Drag		Turbulent Boundary Layer Flow	5-46
Parasite Drag	5-6	Boundary Layer Separation	5-46
Induced Drag	5-7	Shock Waves	5-46
Weight	5-8	Sweepback	5-48
Wingtip Vortices	5-8	Mach Buffet Boundaries	5-49
Formation of Vortices	5-8	High Speed Flight Controls	5-49
Avoiding Wake Turbulence	5-9	Chapter Summary	5-51
Ground Effect	5-11		
Axes of an Aircraft	5-12	Chapter 6	
Moment and Moment Arm	5-13	Flight Controls	6-1
Aircraft Design Characteristics	5-14	Introduction	6-1
Stability	5-14	Flight Control Systems	6-2
Static Stability	5-14	Flight Controls	6-2
Dynamic Stability	5-14	Primary Flight Controls	6-2
Longitudinal Stability (Pitching)	5-15	Elevator	6-5
Lateral Stability (Rolling)		T-Tail	6-6
Directional Stability (Yawing)		Stabilator	6-7
Free Directional Oscillations (Dutch Roll)		Canard	6-7
Spiral Instability		Rudder	6-8
Effect of Wing Planform		V-Tail	
Aerodynamic Forces in Flight Maneuvers		Secondary Flight Controls	
Forces in Turns		Flaps	
Forces in Climbs		Leading Edge Devices	
Forces in Descents			
Stalls		Spoilers	
Angle of Attack Indicators		Trim Tabs	
Basic Propeller Principles		Balance Tabs	
Torque and P-Factor		Servo Tabs	
Torque Reaction		Antiservo Tabs	
Corkscrew Effect		Ground Adjustable Tabs	6-11
Gyroscopic Action		Adjustable Stabilizer	6-12
Asymmetric Loading (P-Factor)		Autopilot	6-12
Load Factors		Chapter Summary	6-12
Load Factors in Aircraft Design			
Load Factors in Steep Turns		Chapter 7	
Load Factors and Stalling Speeds		Aircraft Systems	7-1
Load Factors and Flight Maneuvers		Introduction	7-1
Vg Diagram		Powerplant	7-1
Rate of Turn		Reciprocating Engines	7-2
Radius of Turn		Propeller	7-4

Fixed-Pitch Propeller	/-5	Fuel Gauges	/-26
Adjustable-Pitch Propeller	7-6	Fuel Selectors	7-26
Propeller Overspeed in Piston Engine Aircraft	7-7	Fuel Strainers, Sumps, and Drains	7-27
Induction Systems	7-7	Fuel Grades	7-27
Carburetor Systems	7-8	Fuel Contamination	
Mixture Control		Fuel System Icing	
Carburetor Icing	7-9	Prevention Procedures	7-28
Carburetor Heat		Refueling Procedures	
Carburetor Air Temperature Gauge		Heating System	7-29
Outside Air Temperature Gauge		Fuel Fired Heaters	7-29
Fuel Injection Systems		Exhaust Heating Systems	
Superchargers and Turbosuperchargers		Combustion Heater Systems	
Superchargers		Bleed Air Heating Systems	
Turbosuperchargers		Electrical System	
System Operation		Hydraulic Systems	
High Altitude Performance		Landing Gear	
Ignition System		Tricycle Landing Gear	
Oil Systems		Tailwheel Landing Gear	
Engine Cooling Systems		Fixed and Retractable Landing Gear	7-34
Exhaust Systems		Brakes	7-34
Starting System		Pressurized Aircraft	7-34
Combustion		Oxygen Systems	7-37
Full Authority Digital Engine Control (FADEC)		Oxygen Masks	7-38
Turbine Engines		Cannula	7-38
Types of Turbine Engines		Pressure-Demand Oxygen Systems	7-38
Turbojet		Continuous-Flow Oxygen System	
Turboprop		Electrical Pulse-Demand Oxygen System	7-38
Turbofan		Pulse Oximeters	
Turboshaft		Servicing of Oxygen Systems	
		Anti-Ice and Deice Systems	
Turbine Engine Instruments Engine Pressure Ratio (EPR)		Airfoil Anti-Ice and Deice	
		Windscreen Anti-Ice	
Exhaust Gas Temperature (EGT)		Propeller Anti-Ice	
Torquemeter		Other Anti-Ice and Deice Systems	
N ₁ Indicator		Chapter Summary	7-41
N ₂ Indicator			
Turbine Engine Operational Considerations		Chapter 8	
Engine Temperature Limitations		Flight Instruments	
Thrust Variations	7-23	Introduction	
Foreign Object Damage (FOD)	7-23	Pitot-Static Flight Instruments	
Turbine Engine Hot/Hung Start	7-23	Impact Pressure Chamber and Lines	
Compressor Stalls	7-23	Static Pressure Chamber and Lines	
Flameout	7-24	Altimeter	
Performance Comparison	7-24	Principle of Operation	
Airframe Systems		Effect of Nonstandard Pressure and Temper	
Fuel Systems		Setting the Altimeter	
Gravity-Feed System		Altimeter Operation	
Fuel-Pump System		Types of Altitude	
Fuel Primer		Instrument Check	
Fuel Tanks		Vertical Speed Indicator (VSI)	8-7

Principle of Operation	8-7	Chapter 9	
Instrument Check	8-8	Flight Manuals and Other Documents	9-1
Airspeed Indicator (ASI)	8-8	Introduction	
Airspeed Indicator Markings	8-9	Preliminary Pages	
Other Airspeed Limitations	8-9	General (Section 1)	
Instrument Check		Limitations (Section 2)	
Blockage of the Pitot-Static System	8-10	Airspeed	
Blocked Pitot System		Powerplant	9-3
Blocked Static System		Weight and Loading Distribution	9-3
Electronic Flight Display (EFD)		Flight Limits	9-4
Airspeed Tape		Placards	9-4
Attitude Indicator		Emergency Procedures (Section 3)	9-4
Altimeter		Normal Procedures (Section 4)	
Vertical Speed Indicator (VSI)		Performance (Section 5)	
Heading Indicator		Weight and Balance/Equipment List (Section 6)	
Turn Indicator		Systems Description (Section 7)	
Tachometer		Handling, Service, and Maintenance (Section 8)	
Slip/Skid Indicator		Supplements (Section 9)	
Turn Rate Indicator		Safety Tips (Section 10)	9-6
Air Data Computer (ADC)		Aircraft Documents	
Trend Vectors		Certificate of Aircraft Registration	9-6
Gyroscopic Flight Instruments		Airworthiness Certificate	
Gyroscopic Principles		Aircraft Maintenance	9-8
Rigidity in Space		Aircraft Inspections	9-8
Precession		Annual Inspection	9-8
Sources of Power		100-Hour Inspection	9-8
Turn Indicators		Other Inspection Programs	9-9
Turn-and-Slip Indicator		Altimeter System Inspection	9-9
Turn Coordinator		Transponder Inspection	9-9
Inclinometer		Emergency Locator Transmitter	9-9
Yaw String		Preflight Inspections	
Instrument Check		Minimum Equipment Lists (MEL) and Operations	
Attitude Indicator		With Inoperative Equipment	9-9
Heading Indicator		Preventive Maintenance	9-10
Attitude and Heading Reference System (AHRS)		Maintenance Entries	9-10
The Flux Gate Compass System		Examples of Preventive Maintenance	9-10
Remote Indicating Compass		Repairs and Alterations	
Instrument Check		Special Flight Permits	
Angle of Attack Indicators		Airworthiness Directives (ADs)	
Compass Systems		Aircraft Owner/Operator Responsibilities	
Magnetic Compass		Chapter Summary	
Magnetic Compass Induced Errors		•	
The Vertical Card Magnetic Compass		Chapter 10	
-		Weight and Balance	.10-1
Lags or Leads		Introduction	10-1
Eddy Current Damping		Weight Control	10-1
Outside Air Temperature (OAT) Gauge		Effects of Weight	10-2
Chapter Summary	8-28	Weight Changes	10-2

Balance, Stability, and Center of Gravity	10-2	Landing Charts	11-26
Effects of Adverse Balance	10-3	Stall Speed Performance Charts	11-27
Stability	10-3	Transport Category Aircraft Performance	11-28
Control	10-3	Air Carrier Obstacle Clearance Requirements	11-28
Management of Weight and Balance Control	10-4	Chapter Summary	11-28
Terms and Definitions			
Principles of Weight and Balance Computation		Chapter 12	
Weight and Balance Restrictions		Weather Theory	12-1
Determining Loaded Weight and CG		Introduction	12-1
Computational Method		Atmosphere	
Graph Method		Composition of the Atmosphere	12-2
Table Method		Atmospheric Circulation	12-3
Computations With a Negative Arm		Atmospheric Pressure	12-3
Computations With Zero Fuel Weight		Coriolis Force	12-3
Shifting, Adding, and Removing Weight		Measurement of Atmosphere Pressure	12-4
Weight Shifting		Altitude and Atmospheric Pressure	12-5
Weight Addition or Removal		Altitude and Flight	12-6
Chapter Summary		Altitude and the Human Body	12-6
Chapter Summary	10-11	Wind and Currents	12-7
Chapter 11		Wind Patterns	12-7
Aircraft Performance	11_1	Convective Currents	12-7
Introduction		Effect of Obstructions on Wind	12-8
Importance of Performance Data		Low-Level Wind Shear	12-11
Structure of the Atmosphere		Wind and Pressure Representation on Surface	
Atmospheric Pressure		Weather Maps	12-12
Pressure Altitude		Atmospheric Stability	12-12
Density Altitude		Inversion	12-13
Effects of Pressure on Density		Moisture and Temperature	12-13
Effects of Temperature on Density		Relative Humidity	12-13
Effects of Humidity (Moisture) on Density		Temperature/Dew Point Relationship	
Performance		Methods by Which Air Reaches the Saturation	
		Point	12-14
Straight-and-Level Flight		Dew and Frost	12-15
Climb Performance		Fog	12-15
Angle of Climb (AOC)		Clouds	12-15
Rate of Climb (ROC)		Ceiling	12-17
Climb Performance Factors		Visibility	
Range Performance		Precipitation	
Region of Reversed Command		Air Masses	12-17
Takeoff and Landing Performance		Fronts	
Runway Surface and Gradient	11-12	Warm Front	12-18
Water on the Runway and Dynamic		Flight Toward an Approaching Warm Front	12-19
Hydroplaning		Cold Front	
Takeoff Performance		Fast-Moving Cold Front	
Landing Performance		Flight Toward an Approaching Cold Front	
Performance Speeds		Comparison of Cold and Warm Fronts	
Performance Charts		Wind Shifts	
Interpolation		Stationary Front	
Density Altitude Charts		Occluded Front	
Takeoff Charts		Thunderstorms	
Climb and Cruise Charts		Hazards	
Crosswind and Headwind Component Chart	11-25	11aZaIU8	12-23

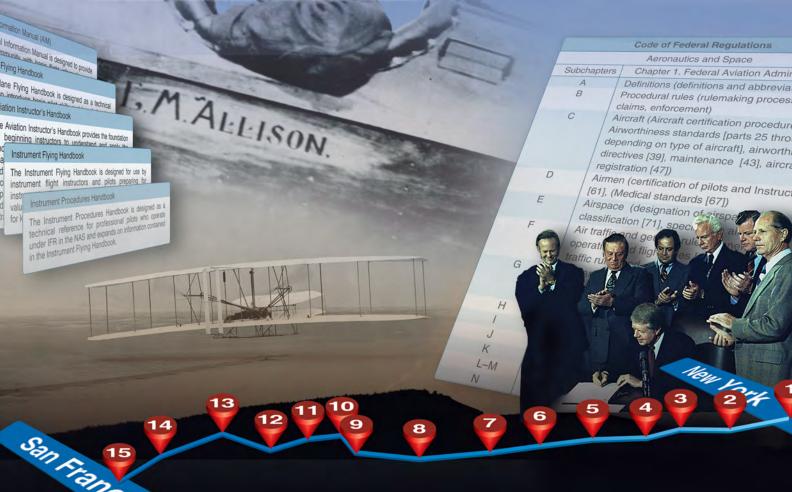
Squall Line	12-23	Weather Products Age and Expiration	
Tornadoes	12-23	What Can Pilots Do?	13-19
Turbulence	12-24	NEXRAD Abnormalities	13-21
Icing	12-24	NEXRAD Limitations	13-21
Hail		AIRMET/SIGMET Display	13-21
Ceiling and Visibility		Graphical METARs	
Effect on Altimeters		Data Link Weather	
		Data Link Weather Products	
Lightning		Flight Information Service- Broadcast (FIS	
Engine Water Ingestion		Pilot Responsibility	
Chapter Summary	12-25	Chapter Summary	
Chantar 12		C	
Chapter 13 Aviation Weather Services	12.1	Chapter 14	
Introduction		Airport Operations	14-1
Observations		Introduction	14-1
Surface Aviation Weather Observations		Airport Categories	14-1
Air Route Traffic Control Center (ARTCC)		Types of Airports	14-2
		Towered Airport	14-2
Upper Air Observations		Nontowered Airport	14-2
Radar Observations		Sources for Airport Data	
Satellite		Aeronautical Charts	
Service Outlets (FGG)		Chart Supplement U.S. (formerly Airport/Fac	
Flight Service Station (FSS)		Directory)	
Telephone Information Briefing Service (TIBS)	13-4	Notices to Airmen (NOTAM)	
Hazardous Inflight Weather Advisory	12.4	Automated Terminal Information Service (A'	
Service (HIWAS)	13-4	Airport Markings and Signs	,
Transcribed Weather Broadcast (TWEB) (Alaska Only)	12 /	Runway Markings and Signs	
Weather Briefings		Relocated Runway Threshold	
Standard Briefing		Displaced Threshold	
Abbreviated Briefing		Runway Safety Area	
Outlook Briefing		Runway Safety Area Boundary Sign	
Aviation Weather Reports		Runway Holding Position Sign	
Aviation Routine Weather Report (METAR)			
Pilot Weather Reports (PIREPs)		Runway Holding Position Marking	
Aviation Forecasts		Runway Distance Remaining Signs	
Terminal Aerodrome Forecasts (TAF)		Runway Designation Marking	
Area Forecasts (FA)		Land and Hold Short Operations (LAHSO)	
Inflight Weather Advisories		Taxiway Markings and Signs	
AIRMET		Enhanced Taxiway Centerline Markings	
SIGMET		Destination Signs	14-12
	13-12	Holding Position Signs and Markings for an	l
Convective Significant Meteorological Information (WST)	12 12	Instrument Landing System (ILS) Critical A	rea 14-12
		Holding Position Markings for Taxiway/Ta	axiway
Winds and Temperature Aloft Forecast (FB)		Intersections	14-14
Weather Charts.		Marking and Lighting of Permanently Clos	sed
Surface Analysis Chart		Runways and Taxiways	14-14
Weather Depiction Chart		Temporarily Closed Runways and Taxiway	ys14-15
Significant Weather Prognostic Charts		Other Markings	14-15
ATC Radar Weather Displays		Airport Signs	14-15
Weather Avoidance Assistance	13-18	Airport Lighting	14-16
Electronic Flight Displays (EFD) /Multi-Function Display (MFD) Weather	13-18	Airport Beacon	14-16
Display (IIII D) II Cauloi	15 10		

Approach Light Systems	14-10	ATC Instructions—Explicit Kullway Clossii	ıg 14-34
Visual Glideslope Indicators	14-16	ATC Instructions—"Line Up and Wait"	
Visual Approach Slope Indicator (VASI)	14-16	(LUAW)	14-34
Other Glidepath Systems	14-16	ATC Instructions—"Runway Shortened"	14-35
Runway Lighting	14-17	Pre-Landing, Landing, and After-Landing	14-35
Runway End Identifier Lights (REIL)	14-17	Engineered Materials Arresting Systems (EMAS	3)14-36
Runway Edge Lights	14-17	Incidents	14-36
In-Runway Lighting		EMAS Installations and Information	14-37
Control of Airport Lighting		Pilot Considerations	14-37
Taxiway Lights		Chapter Summary	14-38
Omnidirectional			
Clearance Bar Lights		Chapter 15	
Runway Guard Lights		Airspace	
Stop Bar Lights		Introduction	
Obstruction Lights		Controlled Airspace	
New Lighting Technologies		Class A Airspace	15-2
Wind Direction Indicators		Class B Airspace	15-2
Traffic Patterns		Class C Airspace	
Example: Key to Traffic Pattern Operations—		Class D Airspace	15-2
Single Runway		Class E Airspace	
Example: Key to Traffic Pattern Operations—		Uncontrolled Airspace	
Parallel Runways		Class G Airspace	
Radio Communications		Special Use Airspace	15-3
Radio License		Prohibited Areas	15-3
Radio Equipment		Restricted Areas	15-3
Using Proper Radio Procedures		Warning Areas	
Lost Communication Procedures		Military Operation Areas (MOAs)	15-4
Air Traffic Control (ATC) Services		Alert Areas	15-4
Primary Radar		Controlled Firing Areas (CFAs)	15-4
ATC Radar Beacon System (ATCRBS)		Other Airspace Areas	15-4
Transponder		Local Airport Advisory (LAA)	15-6
Automatic Dependent Surveillance–		Military Training Routes (MTRs)	
Broadcast (ADS-B)	14-26	Temporary Flight Restrictions (TFR)	
Radar Traffic Advisories		Published VFR Routes	
Wake Turbulence		Terminal Radar Service Areas (TRSAs)	
Vortex Generation		National Security Areas (NSAs)	
Terminal Area	14-27	Air Traffic Control and the National Airspace Sy	
En Route	14-27	Coordinating the Use of Airspace	
Vortex Behavior		Operating in the Various Types of Airspace	
Vortex Avoidance Procedures		Basic VFR Weather Minimums	15-7
Collision Avoidance		Operating Rules and Pilot/Equipment	
Clearing Procedures		Requirements	
Training Operations		Ultralight Vehicles	
Scanning Techniques for Traffic Avoidance		Unmanned Free Balloons	15-11
Best Practices to See and Avoid		Unmanned Aircraft Systems	15-11
Pilot Deviations (PDs)	14-31	Parachute Jumps	15-11
Runway Incursion Avoidance	14-31	Chapter Summary	15-11
Causal Factors of Runway Incursions			
Runway Confusion			
Causal Factors of Runway Confusion			
ATC Instructions			
ATC Instructions—"Hold Short"			
1110 mondono il 1010 biloit			

Navigation16-1a RMI1Introduction16-1Time and Distance Check From a Station UsingAeronautical Charts16-2a CDI1	
	6-27
A grangutical Charts 16.2 a CDI	6-27
Tieronautical Charts	
Sectional Charts16-2 Course Intercept1	
VFR Terminal Area Charts	6-27
World Aeronautical Charts	6-27
Latitude and Longitude (Meridians and Parallels)16-3 Distance Measuring Equipment (DME)1	6-27
Time Zones	6-28
Measurement of Direction	6-29
Variation	6-30
Magnetic Variation	6-31
Magnetic Deviation	6-32
Deviation	6-32
Effect of Wind	
Basic Calculations	
Converting Minutes to Equivalent Hours16-11 Lost Procedures	
Time $T = D/GS$	
Distance D = GS X T	
GS GS = D/T16-11	
Converting Knots to Miles Per Hour16-11 Chapter 17	
Fuel Consumption16-11 Aeromedical Factors	17-1
Flight Computers16-12 Introduction	17-1
Plotter16-12 Obtaining a Medical Certificate	17-2
Pilotage	
Dead Reckoning	17-3
Wind Triangle or Vector Analysis	17-3
Step 1 Hypoxic Hypoxia	17-3
Step 2	17-3
Step 3	17-3
Step 4 Histotoxic Hypoxia	17-4
Step 4	
Tright Flamming 10-17	
Assembling Necessary Material 10-17	
M'111 F 16' D.11	
Use of Chart Supplement U.S. (formerly Airport/Facility Directory)16-17 Spatial Disorientation and Illusions	
Airplane Flight Manual or Pilot's Operating Vestibular Illusions	
Handbook (AFM/POH)16-17 Visual Illusions	
Charting the Course	
Steps in Charting the Course	
Filing a VFR Flight Plan	
Ground-Based Navigation	
Danier (VOD) 16 22	
Using the VOR	
Course Deviation Indicator (CDI) 16.23	
Horizontal Situation Indicator 16-24	
Radio Magnetic Indicator (RMI) 16-24 Coping with Spatial Disorientation	
Tracking With VOR 16-25 Optical Illusions	
Tips on Using the VOR	7-10

Runway and Terrain Slopes Illusion	17-10
Featureless Terrain Illusion	17-10
Water Refraction	17-10
Haze	17-10
Fog	17-10
Ground Lighting Illusions	17-10
How To Prevent Landing Errors Due to	
Optical Illusions	17-10
Motion Sickness	17-12
Carbon Monoxide (CO) Poisoning	17-12
Stress	17-12
Fatigue	
Exposure to Chemicals	
Hydraulic Fluid	
Engine Oil	17-14
Fuel	
Dehydration and Heatstroke	17-14
Alcohol	17-15
Drugs	
Altitude-Induced Decompression Sickness (DCS	
DCS After Scuba Diving	
Vision in Flight	
Vision Types	
Photopic Vision	
Mesopic Vision	
Scotopic Vision	
Central Blind Spot	
Empty-Field Myopia	
Night Vision	
Night Blind Spot	
Dark Adaptation	
Scanning Techniques	
Night Vision Protection	17-23
Self-Imposed Stress	17-25
Distance Estimation and Depth Perception	17-25
Binocular Cues	
Night Vision Illusions	17-26
Autokinesis	17-26
False Horizon	17-26
Reversible Perspective Illusion	17-26
Size-Distance Illusion	17-27
Fascination (Fixation)	17-27
Flicker Vertigo	
Night Landing Illusions	
Enhanced Night Vision Systems	
Synthetic Vision System	
Enhanced Flight Vision System	
Chanter Summary	

Appendix A Performance Data for Cessna Model 172R and Challenger 605	A- 1
Appendix B	
Acronyms, Abbreviations, and NOTAM	
Contractions	B- 1
Appendix C	
Airport Signs and Markings	C- 1
Glossary	G-1
Index	I-1


Introduction To Flying

Introduction

The Pilot's Handbook of Aeronautical Knowledge provides basic knowledge for the student pilot learning to fly, as well as pilots seeking advanced pilot certification. For detailed information on a variety of specialized flight topics, see specific Federal Aviation Administration (FAA) handbooks and Advisory Circulars (ACs).

This chapter offers a brief history of flight, introduces the history and role of the FAA in civil aviation, FAA regulations and standards, government references and publications, eligibility for pilot certificates, available routes to flight instruction, the role of the Certificated Flight Instructor (CFI) and Designated Pilot Examiner (DPE) in flight training, Practical Test Standards (PTS), and new, industry-developed Airman Certification Standards (ACS) framework that will eventually replace the PTS.

History of Flight

From prehistoric times, humans have watched the flight of birds, and longed to imitate them, but lacked the power to do so. Logic dictated that if the small muscles of birds can lift them into the air and sustain them, then the larger muscles of humans should be able to duplicate the feat. No one knew about the intricate mesh of muscles, sinew, heart, breathing system, and devices not unlike wing flaps, variable-camber and spoilers of the modern airplane that enabled a bird to fly. Still, thousands of years and countless lives were lost in attempts to fly like birds.

The identity of the first "bird-men" who fitted themselves with wings and leapt off of cliffs in an effort to fly are lost in time, but each failure gave those who wished to fly questions that needed to be answered. Where had the wing flappers gone wrong? Philosophers, scientists, and inventors offered solutions, but no one could add wings to the human body and soar like a bird. During the 1500s, Leonardo da Vinci filled pages of his notebooks with sketches of proposed flying machines, but most of his ideas were flawed because he clung to the idea of birdlike wings. [Figure 1-1] By 1655, mathematician, physicist, and inventor Robert Hooke concluded that the human body does not possess the strength to power artificial wings. He believed human flight would require some form of artificial propulsion.

The quest for human flight led some practitioners in another direction. In 1783, the first manned hot air balloon, crafted by Joseph and Etienne Montgolfier, flew for 23 minutes. Ten days later, Professor Jacques Charles flew the first gas balloon. A madness for balloon flight captivated the public's imagination and for a time flying enthusiasts turned their expertise to the promise of lighter-than-air flight. But for all its majesty in the air, the balloon was little more than a

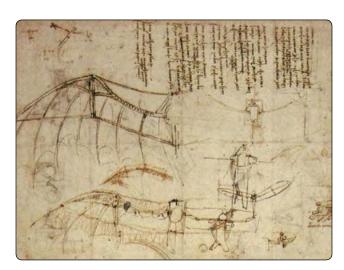
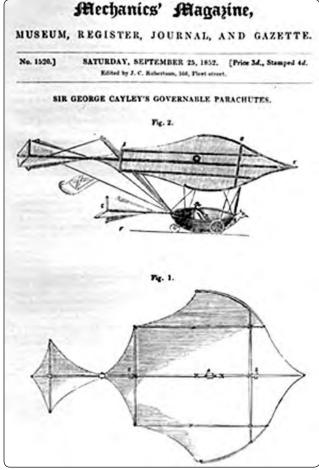



Figure 1-1. Leonardo da Vinci's ornithopter wings.

billowing heap of cloth capable of no more than a one-way, downwind journey.

Balloons solved the problem of lift, but that was only one of the problems of human flight. The ability to control speed and direction eluded balloonists. The solution to that problem lay in a child's toy familiar to the East for 2,000 years, but not introduced to the West until the 13th century—the kite. The kites used by the Chinese for aerial observation, to test winds for sailing, as a signaling device, and as a toy, held many of the answers to lifting a heavier-than-air device into the air.

One of the men who believed the study of kites unlocked the secrets of winged flight was Sir George Cayley. Born in England 10 years before the Mongolfier balloon flight, Cayley spent his 84 years seeking to develop a heavier-than-air vehicle supported by kite-shaped wings. [Figure 1-2] The "Father of Aerial Navigation," Cayley discovered the basic principles on which the modern science of aeronautics is founded; built what is recognized as the first successful flying model; and tested the first full-size man-carrying airplane.

Figure 1-2. Glider from 1852 by Sir George Cayley, British aviator (1773–1857).

For the half-century after Cayley's death, countless scientists, flying enthusiasts, and inventors worked toward building a powered flying machine. Men, such as William Samuel Henson, who designed a huge monoplane that was propelled by a steam engine housed inside the fuselage, and Otto Lilienthal, who proved human flight in aircraft heavier than air was practical, worked toward the dream of powered flight. A dream turned into reality by Wilbur and Orville Wright at Kitty Hawk, North Carolina, on December 17, 1903.

The bicycle-building Wright brothers of Dayton, Ohio, had experimented for 4 years with kites, their own homemade wind tunnel, and different engines to power their biplane. One of their great achievements in flight was proving the value of the scientific, rather than a build-it-and-see approach. Their biplane, The Flyer, combined inspired design and engineering with superior craftsmanship. [Figure 1-3] By the afternoon of December 17th, the Wright brothers had flown a total of 98 seconds on four flights. The age of flight had arrived.

History of the Federal Aviation Administration (FAA)

During the early years of manned flight, aviation was a free for all because no government body was in place to establish policies or regulate and enforce safety standards. Individuals were free to conduct flights and operate aircraft with no government oversight. Most of the early flights were conducted for sport. Aviation was expensive and became the playground of the wealthy. Since these early airplanes were small, many people doubted their commercial value. One group of individuals believed otherwise and they became the genesis for modern airline travel.

P. E. Fansler, a Florida businessman living in St. Petersburg, approached Tom Benoist of the Benoist Aircraft Company in St. Louis, Missouri, about starting a flight route from St.

Figure 1-3. First flight by the Wright brothers.

Petersburg across the waterway to Tampa. Benoist suggested using his "Safety First" airboat and the two men signed an agreement for what would become the first scheduled airline in the United States. The first aircraft was delivered to St. Petersburg and made the first test flight on December 31, 1913. [Figure 1-4]

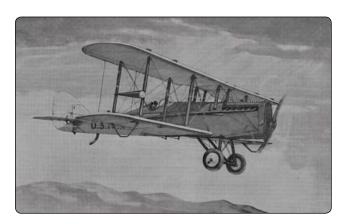
A public auction decided who would win the honor of becoming the first paying airline customer. The former mayor of St. Petersburg, A. C. Pheil, made the winning bid of \$400.00, which secured his place in history as the first paying airline passenger.

On January 1, 1914, the first scheduled airline flight was conducted. The flight length was 21 miles and lasted 23 minutes due to a headwind. The return trip took 20 minutes. The line, which was subsidized by Florida businessmen, continued for 4 months and offered regular passage for \$5.00 per person or \$5.00 per 100 pounds of cargo. Shortly after the opening of the line, Benoist added a new airboat that afforded more protection from spray during takeoff and landing. The routes were also extended to Manatee, Bradenton, and Sarasota giving further credence to the idea of a profitable commercial airline.

The St. Petersburg-Tampa Airboat Line continued throughout the winter months with flights finally being suspended when the winter tourist industry began to dry up. The airline operated for only 4 months, but 1,205 passengers were carried without injury. This experiment proved commercial passenger airline travel was viable.

The advent of World War I offered the airplane a chance to demonstrate its varied capabilities. It began the war as a reconnaissance platform, but by 1918, airplanes were being

Figure 1-4. Benoist airboat.


mass produced to serve as fighters, bombers, trainers, as well as reconnaissance platforms.

Aviation advocates continued to look for ways to use airplanes. Airmail service was a popular idea, but the war prevented the Postal Service from having access to airplanes. The War Department and Postal Service reached an agreement in 1918. The Army would use the mail service to train its pilots in flying cross-country. The first airmail flight was conducted on May 15, 1918, between New York and Washington, DC. The flight was not considered spectacular; the pilot became lost and landed at the wrong airfield. In August of 1918, the United States Postal Service took control of the airmail routes and brought the existing Army airmail pilots and their planes into the program as postal employees.

Transcontinental Air Mail Route

Airmail routes continued to expand until the Transcontinental Mail Route was inaugurated. [Figure 1-5] This route spanned from San Francisco to New York for a total distance of 2,612 miles with 13 intermediate stops along the way. [Figure 1-6] On May 20, 1926, Congress passed the Air Commerce Act, which served as the cornerstone for aviation within the United States. This legislation was supported by leaders in the aviation industry who felt that the airplane could not reach its full potential without assistance from the Federal Government in improving safety.

The Air Commerce Act charged the Secretary of Commerce with fostering air commerce, issuing and enforcing air traffic rules, licensing pilots, certificating aircraft, establishing airways, and operating and maintaining aids to air navigation. The Department of Commerce created a new Aeronautics Branch whose primary mission was to provide oversight for the aviation industry. In addition, the Aeronautics Branch took over the construction and operation of the nation's system of lighted airways. The Postal Service, as part of the Transcontinental Air Mail Route system, had initiated this system. The

Figure 1-5. The de Haviland DH-4 on the New York to San Francisco inaugural route in 1921.

Figure 1-6. The transcontinental airmail route ran from New York to San Francisco.

Department of Commerce made significant advances in aviation communications, including the introduction of radio beacons as an effective means of navigation.

Built at intervals of approximately 10 miles apart, the standard beacon tower was 51 feet high, and was topped with a powerful rotating light. Below the rotating light, two course lights pointed forward and back along the airway. The course lights flashed a code to identify the beacon's number. The tower usually stood in the center of a concrete arrow 70 feet long. A generator shed, where required, stood at the "feather" end of the arrow. [Figure 1-7]

Federal Certification of Pilots and Mechanics

The Aeronautics Branch of the Department of Commerce began pilot certification with the first license issued on April 6, 1927. The recipient was the Chief of the Aeronautics Branch, William P. MacCracken, Jr. [Figure 1-8] (Orville Wright, who was no longer an active flier, had declined the honor.) MacCracken's license was the first issued to a pilot by a civilian agency of the Federal Government. Some 3 months later, the Aeronautics Branch issued the first Federal aircraft mechanic license.

Equally important for safety was the establishment of a system of certification for aircraft. On March 29, 1927, the Aeronautics Branch issued the first airworthiness type certificate to the Buhl Airster CA-3, a three-place open biplane.

In 1934, to recognize the tremendous strides made in aviation and to display the enhanced status within the department, the Aeronautics Branch was renamed the Bureau of Air Commerce. [Figure 1-9] Within this time frame, the Bureau of Air Commerce brought together a group of airlines

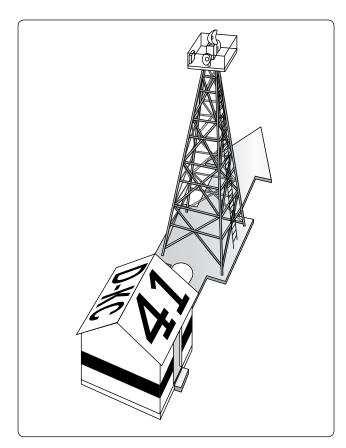


Figure 1-7. A standard airway beacon tower.

Figure 1-8. The first pilot license was issued to William P. MacCracken, Jr.

Figure 1-9. The third head of the Aeronautics Branch, Eugene L. Vidal, is flanked by President Franklin D. Roosevelt (left) and Secretary of Agriculture Henry A. Wallace (right). The photograph was taken in 1933. During Vidal's tenure, the Aeronautics Branch was renamed the Bureau of Air Commerce on July 1, 1934. The new name more accurately reflected the status of the organization within the Department of Commerce.

and encouraged them to form the first three Air Traffic Control (ATC) facilities along the established air routes. Then in 1936, the Bureau of Air Commerce took over the responsibilities of operating the centers and continued to advance the ATC facilities. ATC has come a long way from the early controllers using maps, chalkboards, and performing mental math calculations in order to separate aircraft along flight routes.

The Civil Aeronautics Act of 1938

In 1938, the Civil Aeronautics Act transferred the civil aviation responsibilities to a newly created, independent body, named the Civil Aeronautics Authority (CAA). This Act empowered the CAA to regulate airfares and establish new routes for the airlines to service.

President Franklin Roosevelt split the CAA into two agencies—the Civil Aeronautics Administration (CAA) and the Civil Aeronautics Board (CAB). Both agencies were still part of the Department of Commerce but the CAB functioned independently of the Secretary of Commerce. The role of the CAA was to facilitate ATC, certification of airmen and aircraft, rule enforcement, and the development of new airways. The CAB was charged with rule making to enhance safety, accident investigation, and the economic regulation of the airlines. Then in 1946, Congress gave the CAA the responsibility of administering the Federal Aid